CONSULTANCY

Rccelerating Digital Initiatives Using Data Virtualization
to API-Enable Mainframe Hpplications and Data

R Whitepaper

Rick F. van der Lans
Independent Business Intelligence Analyst
R20/Consultancy

February 2018

Copyright © 2018 R20/Consultancy. All rights reserved. IBM, the IBM logo, and ibm.com are trademarks
or registered trademarks of International Business Machines Corporation registered in many jurisdictions
worldwide. Trademarks of companies referenced in this document are the sole property of their
respective owners.

Table of Contents

1 Executive Summary

2 New Systems of Engagement for Digital Transformation

3 Customer-Facing Apps and the Mainframe

4 Externalizing Data and Business Logic the Old Way

5 REST as API for Accessing Applications and Data

6 Externalizing Data and Business Logic with an APl Gateway

7 Overview of IBM’s Mainframe API Gateway: z/0S Connect Enterprise Edition
8 Data Virtualization Servers as APl Gateways

9 Introduction to IBM Data Virtualization Manager for z/0S

10 The Synergetic Effect of Combining IBM DVM and IBM z/0S Connect EE
11 Closing Remarks

About the Author

Copyright © 2018 R20/Consultancy, all rights reserved.

00 N o B~ N

10
12
13
15
16

Accelerating Digital Initiatives Using Data Virtualization to API-Enable Mainframe Applications and Data 1

1 Executive Summary

Legacy Systems Form the IT Backbone of Many Organizations — They were the catalyst of the Information Age,
the IT backbone of modern business, and eventually became what we referred to today as legacy systems.
Built before the advent of the Internet, mobile devices or cloud, they are developed with technologies
that most young developers have never heard of, and if they have, they’ve probably never used them.

Despite that these systems may come across foreign to millennial programmers, they still support the bulk
of transactional workloads that underpin numerous financial organizations, medical environments, airline
companies, industrial companies, and so on. If these backend systems fail or stop, many business
processes will grind to a halt. Airlines won’t be able to sell seats, banks won’t be able to transfer money,
and in medical environments patient data won’t be accessible anymore.

We are referring to the IBM Z platform and the mainframe applications and data that were developed
many years ago with languages such as Cobol, PL1, and CICS, and with database technologies such as
VSAM, IMS, IDMS, and Adabas. Although they are decades old and have a unique user experience, their
functionality is still very valuable to organizations and the data they manage is crucial for organizations to
continue operations.

Digital Transformation — Crowding the list of CIO imperatives today is digital transformation. “Digital
transformation? is the [...] transformation of business activities, processes, competencies and models to
fully leverage the changes and opportunities of digital technologies and their impact across society [...].”
One component of digital transformation is the customer-facing app. External partners, such as
customers, partners, agents, and suppliers want and need direct access to an organization’s IT systems
and data, without any human intermediate but through new systems of engagement, such as through
smart phones, tablets, and the Web.

Technically this means that the functionality offered by mainframe systems and the data they store must
be externalized. By using apps running on modern devices (such as tablets and smartphones), TV sets at
homes, portals, websites, and kiosk machines in public environments (such as sport stadia, hospitals,
airports), these external parties must be able to invoke this functionality and retrieve and manipulate the
data.

REST-Based APIs and Secure Gateways — Over the years several technologies, such as messaging technology,
enterprise services busses, and gateways, have been used with mixed results to wrap the older mainframe
systems and externalize the data and functionality to make it available on today’s devices. Unfortunately,
most of these projects didn’t have satisfying results. The problem is that they are too “heavy” and too
cumbersome, for example, when running on small, mobile devices. Technology is needed that is, first,
lightweight enough to be used on small devices, second, uses existing technology available on those
devices and, third, is reliable, secure, and robust enough to access mainframe applications and data
without denigrating quality of service. This is the domain of REST-based API gateways.

1 i-Scoop, “Digital transformation: online guide to digital business transformation”; see https://www.i-scoop.eu/digital-
transformation/

Copyright © 2018 R20/Consultancy, all rights reserved.

Accelerating Digital Initiatives Using Data Virtualization to API-Enable Mainframe Applications and Data 2

This Whitepaper — This whitepaper describes the importance of externalization of mainframe systems to
develop customer-facing apps for mobile devices and the cloud. It also describes an API gateway solution
that offers a lightweight REST-based interface that fits the needs of today’s digital application
development and that integrates fully with legacy mainframe applications. This solution is a combination
of IBM’s API gateway product called z/0S Connect Enterprise Edition and IBM Data Virtualization Manager
for z/0S. It also explains the importance of the REST interface for customer-facing apps.

Although the whitepaper is somewhat technical, because it explains products and technologies, it’s
basically about customers and other external parties. Digital transformation and externalization of
mainframe systems is about improving customer experience, customer service, customer delight, and
about making our partners more efficient. It’s about extending today’s modern mainframe into all aspects
of digital transformation, enabling external parties to integrate with our mainframe systems more directly
and more freely, using any device or platform.

2 New Systems of Engagement for Digital Transformation

The Digital Transformation — There was a time when only employees were using an organization’s IT
systems. Access was through terminals and PCs, and none of them accessed the IT systems remotely.
Everything was controlled and secured. No external parties had access.

So much has changed in the meantime. New systems and technologies for engagement and deployment
have been introduced. With the introduction of the Web, mobile devices (such as tablets, smartphones,
and smart watches), and the cloud, users can access IT systems from anywhere. Moreover, the group of
users is not restricted to employees anymore, users can be external parties, such as customers, partners,
suppliers, and agents.

For these new forms of digital engagement and new external users, apps must be developed that run on
these new devices and platforms and that securely access the existing IT systems; see Figure 1. These
customer-facing apps for external parties are a key success factor for every organization’s digital
transformation.

Examples of Customer-Facing Apps — Many examples exist where this need for developing customer-facing
apps by externalizing data and functionality is clear:

Finance: Currently, many banks have developed first generation online services and some customer-facing
apps for mobile devices. With these apps, customers can easily check their bank accounts and make bank
transfers. For more and more customers, the easiness and functionality of these apps can help determine
which bank they will use. Increasingly, the same customers expect a richer digital experience that is
personalized to their unique needs.

Medical: Hospitals want to allow patients themselves to access their personal, medical data via the cloud,
via the Web, and via mobile devices. For example, after giving blood and urine for a checkup, it must be
possible for patients to online, while still maintaining data security. Information may need to be
aggregated from multiple sources and be presented in a user-friendly and understandable way.

Copyright © 2018 R20/Consultancy, all rights reserved.

Accelerating Digital Initiatives Using Data Virtualization to API-Enable Mainframe Applications and Data 3

Figure 1 Customer-facing apps running on
modern devices are a key success factor for
every organization’s digital transformation.

'’)
Mainframe
\ System 1
~ @@ 4
\ System 2
e
~—
| System n
S
L r

Insurance: Over the years numerous insurance companies have developed separate systems for
supporting different insurances products. Customers don’t want to be confronted with siloed
disconnected insurance data. On their mobile phones they want to see an integrated, 360 degrees
overview of the status of their entire insurance portfolio with their insurance company, including for
example their property insurance, car insurance, life insurance, income protection insurance, and health
insurance. Today’s more robust mobile apps can allow customers to make a wide range of simple changes
to the policies and include many value-added features to serve customers and ultimately sell more
products.

Transport: Transport companies were early in noticing the benefits of allowing employees and customers
the facility of mobile enablement. Today, some of these applications may look somewhat simplistic,
because they only show whether the parcel has been shipped, has arrived in the country, and so on. With
the technology of today, the tracking information displayed can be a lot more precise. It's possible to
show to the customer a map that indicates live where the truck, train, ship, or airplane with the
customer’s parcel is located at that specific moment and how long it will take before the parcel arrives.

Cross-Organizations Epps — The most exiting examples of customer-facing apps are those that combine data
and functionality coming from multiple organizations. For example, music collectors would be helped with
an app that shows on a map that there are record stores in the neighborhood that have a record or CD in
store that is on their wanted list. Such a cross-organizational customer facing app would need access to a
GPS map service, a list of record stores and their locations, and access to the inventory management
systems of as many stores as possible, and to a system where collectors can enter their wanted list of
records.

Cross-organization app are a reality today, with many mobile and Web apps are already available that do
exactly this, such as Booking.com and Expedia.

Copyright © 2018 R20/Consultancy, all rights reserved. @

Accelerating Digital Initiatives Using Data Virtualization to API-Enable Mainframe Applications and Data 4

In industries such as banking, directives and regulations are defined to help developing such apps. For
example, in the EU the Payment Services Directive?* (PSD2) has become active. PSD2 is a data and
technology-driven directive that aims to improve competition, innovation, and transparency across the
European payments market. At the core of PSD2 is the requirement for banks to grant third-party
providers access to a customer’s online account/payment services. This will lead to new players on the
financial market offering services via apps that access the data and functionality deployed in the banks’ IT
systems. The effect will be that banks have to decide on whether they want to become a banking “utility”
or an “everyday bank” playing a central role in customers’ daily lives.

Agents and other intermediates in the insurance branch have similar needs. They may want to offer to
their customers the use of a mobile app or web portal that allows them the see their entire insurance
portfolio regardless of with which insurance company the customer has signed a contract.

Externalization as a Business Driver — Allowing external parties to access older IT systems through customer-
facing apps is not a fad. It can be a business driver, because it influences the competitiveness of an
organization, its productivity and efficiency, and its customer friendliness. It has become a matter of
importance. For example, the easiness with which customers can check their financial situation via their
smart phones, track orders via the web, change contracts, order products, will increasingly determine
which bank, which parcel service, which retailer, and which airline they’ll use. It has become a key
distinguishing factor. As indicated, the customer-facing app plays a key role in an organization’s journey to
digital transformation.

3 Customer-Facing Apps and the Mainframe

Externalizing Data and Functionality — Most often, the data presented by customer-facing apps resides in
databases running on server machines; see Figure 2. Examples of data elements are customer addresses,
invoices, stock levels, insurance agreements, and orders. Likewise, the functionality that apps invoke are
modules residing in current IT systems. Examples of such modules are transfer money, book flight,
calculate stock level, and predict a parcel’s estimated delivery time. Functional modules are also called
business logic.

To make this data and functionality available to apps, it must be externalized. Technically, interfaces must
be developed that make it possible to invoke modules within the IT systems and to retrieve and
manipulate data in the databases; see Figure 3.

Externalizing Mainframe Data and Business Logic — When databases and IT are developed on modern platforms
with structured development languages and modular internal structures, it’s not that difficult to create
technical interfaces that can be invoked by apps to get access to the data and business logic. But for many
organizations, who started to develop their IT systems many years ago on mainframe systems,
externalizing their data and business logic is a technological challenge. These databases are not popular
SQl-based databases. Data is not stored in flat, relational data structures and there are no high-level
languages to easily query the data. In addition, the business logic can be deeply hidden in the code of old
applications with no clear modular structure.

2 Wikipedia, Payment Services Directive; see https://en.wikipedia.org/wiki/Payment_Services_Directive

Copyright © 2018 R20/Consultancy, all rights reserved.

Accelerating Digital Initiatives Using Data Virtualization to API-Enable Mainframe Applications and Data

) ——

Module 1

=
’
 Entity 2

Figure 2 The data presented by customer-
facing apps and the functionality they invoke
resides on server machines.

System 1

Module 2

Module n

Figure 3 For externalizing data and
functionality special interfaces are required.

e

.

System 1

Module 1
[Module 2

Interface

E— — f
Entity 2

-

The fact that these mainframe-based IT systems have been around for so long doesn’t mean that the data
they store and the business logic they encompass have become obsolete. On the contrary. The data is still
indispensable to organizations. Bank transfers are still stored in these mainframe systems, but also parcel
tracking data, flight reservations, patient statuses, insurance policies, and so on, are still being stored
there. Additionally, most of an organization’s key business logic may still run on a mainframe. Examples of
business logic still operating on mainframes are: checking the correctness of a new delivery address, safely

Copyright © 2018 R20/Consultancy, all rights reserved. @

Accelerating Digital Initiatives Using Data Virtualization to API-Enable Mainframe Applications and Data 6

and securely processing a bank transfer, copying and transforming data from an operational database to
the data warehouse for reporting and analytics, and calculating the amount of dead stock. Business logic
also contains all the rules for governance and auditing.

The bottom line is that all this data and business logic residing on the mainframe systems form the IT

backbone of an organization. Regardless of the technological complexity, it has to be unlocked. It must be
externalized to support customer-facing apps, to help an organization with their digital transformation.

4 Externalizing Data and Business Logic the 0ld Way

Technologies for Externalizing Data and Business Logic — This need to externalize data and business logic and to
link applications together has existed for many years now. Therefore, many mature technologies and
solutions already exist that can be used to externalize mainframe applications. But most of these “older”
solutions are too heavy-weight for the new customer-facing apps. On the client side it's important that
the solution can operate on devices with a very small footprint, such as smartphones and watches. And
even on the Web the solution should not take minutes to download before the user can invoke the app.

Most of the old solutions are also proprietary solutions, often based on technologies developed by a
single vendor. So, all the connections must be made with one and the same tool. This means that if a bank
wants to externalize some of their data, every user on every device must install that solution as part of the
app. Imagine that every financial organization, retailer, and airline company selects a different solution,
the number of solutions users must install on their devices will be phenomenal. Additionally, for a cross-
organization app to extract data from multiple organizations, it must deal with all the different technical
solutions.

Custom-Coded Solution — Some organizations have tried to develop their own home-made solution. Many of
these projects failed because of lack of sufficient technology skills. On PowerPoint such a solution looks
simple, but developing a scalable, high-performance, robust, and secure solution is complex. Because a
custom-coded solution is a proprietary solution, it’s hard to make it work together with applications and
systems not controlled by the organization itself. Keeping this solution up to date in the future is not
straightforward either.

Messaging Technology — Messaging technologies are proven solutions to send messages back and forth
between applications on different machines. Lately, messaging technology has become hot again because
of the concept of fast data in general and the Internet-of-Things in particular. Products such as Apache
Kafka and RabbitMQ are very powerful products and can connect remote client apps to server
environments such as mainframes. But unfortunately, such technologies require the installation of
software modules on client machines. In other words, they can’t be considered lightweight solutions.

Enterprise Service Bus — An Enterprise Service Bus or ESB can be used to implement Service Oriented
Architectures. They can be used to connect clients to servers. But, as with messaging, this is not a
lightweight solution on the client machines. In fact, for developing customer-facing apps, ESBs have the
same drawbacks as messaging technologies.

XML — Many of the products used to send messages have used XML as messaging format. This has several
benefits, including the capture of and meta data inside the messages. XML, for the purpose of developing

Copyright © 2018 R20/Consultancy, all rights reserved.

Accelerating Digital Initiatives Using Data Virtualization to API-Enable Mainframe Applications and Data 7

customer-facing apps, has two drawbacks. First, because XML was originally meant to be a markup
language, it offers a lot of functionality not used by customer-facing apps, and making XML messages
quite verbose. Second, processing XML messages is not very fast.

Most of the above solutions were developed to connect big systems with each other, not tiny systems

with big systems. They were developed to be scalable, but not for thousands of users concurrently. Their
lack of support of stateless solutions limit the scalability.

5 REST as API for Accessing Applications and Data

REST is the Lingua Franca for Customer-Facing Apps — What is needed is a simple, fast, flexible, lightweight,
and popular technology for allowing customer-facing apps to access data and business logic. Currently,
the most popular APl that meets these requirements is REST (Representational State Transfer). REST has
become the lingua franca of the cloud and the mobile world. Well-known websites, such as Google and
Facebook, use REST to let their web interfaces communicate with their own systems. Most mobile apps
use REST as well.

The benefits of REST are:

e Simplicity: The commands to invoke business logic or retrieve data are straightforward HTTP calls.
If they want to invoke a remote service, they only have to specify the URL location and the
parameters. For example, the following REST call may be sufficient to retrieve the details of a
particular product: GET api.company.com/productdetails/productld. Developers don’t
have to learn a new language or tool.

e Lightweight: REST doesn’t require the installation of complex software on the client devices. REST
makes use of the networking infrastructure that is available on every device and machine
nowadays. It uses HTTP to send messages back and forth.

e De-facto standard: Usage of REST is extremely widespread. Because it’s already used by so many
popular websites and countless apps, it is considered a de-facto standard. Making an investment
in this technology is very safe. REST is not managed or ruled by a specific vendor.

e Stateless: REST is a stateless interface. This means that when, for example, a mobile app invokes
business logic on a server through REST, the application returns an answer and no state remains
on the server. Simply put, with REST there is no such thing as “Give me the next ...”. The server
doesn’t have to keep track of the state of every user. Especially in environments with potentially
hundreds and thousands of users this would seriously hamper the system. This stateless interface
is one of the technical reasons why REST is a lightweight interface and why it allows development
of highly scalable systems.

e Self-descriptive: REST uses the JMS messaging standard. Beside the data itself, JIMS messages
contain descriptive meta data as well. JMS is less verbose than XML.

Copyright © 2018 R20/Consultancy, all rights reserved.

Accelerating Digital Initiatives Using Data Virtualization to API-Enable Mainframe Applications and Data 8

REST and Microservices — REST also plays an important role in a new approach for application development
called Microservices that leads highly modular and maintainable systems. Wikipedia® indicates that
“services in a microservices architecture are processes that communicate with each other over a network
in order to fulfill a goal.” Services must have a small granularity and the protocols must be lightweight. So,
instead of developing one large monolithic system internally consisting of objects, modules, and
components, the microservices are all independent little apps that together form a system. They
communicate with each other through a lightweight protocol. In most cases, REST is uses as that protocol.
The increasing popularity of microservices is an extra boost for REST’s popularity. Companies such as
Amazon, eBay, and Netflix have adopted a microservices architecture.

6 Externalizing Data and Business Logic with an API Gateway

Systems that have to be externalized commonly do not support REST but their own technical interfaces,
such as home-made interfaces or interfaces based on international standards (e.g. SOAP/RPC, JDBC/SQL,
IMS DLI, or CICS). These native interfaces must be converted to REST interfaces. Developing such
interfaces and guaranteeing that they are secure, robust, and scalable is time-consuming and complex. A
more popular and recommended approach is to deploy an AP/ gateway. An APl gateway is a facade that
converts one API into another and hides the complex, native APl of the underlying application, database,
or system; see Figure 4.

Figure 4 An AP|
gateway is a fagcade
that converts one API
into another.

Client app 1

Client app 2 AP{ Gateway System

Clientapp n

In general, an APl gateway decouples the interface that client apps see from the underlying
implementation. For example, an APl gateway may expose data from enterprise systems, such as Billing,
CRM, and Subscriptions, to any other application through a simple API. Most commercially available API
gateways offer REST as interface, and can convert the native interfaces of all kinds of applications and
databases to the REST interface. Additionally, an APl gateway performs several additional tasks such as
API limit throttling, logging, and security.

3 Wikipedia, Microservices; see https://en.wikipedia.org/wiki/Microservices

Copyright © 2018 R20/Consultancy, all rights reserved. @

Accelerating Digital Initiatives Using Data Virtualization to API-Enable Mainframe Applications and Data 9

T Overview of IBM’s Mainframe API Gateway: z/0S Connect Enterprise Edition

IBM’s Mainframe API Gateway — Although several APl gateway products are available, not that many exist
that can access legacy systems on mainframes through a REST interface. IBM offers IBM z/0S Connect
Enterprise Edition as the preferred API gateway for this purpose. It’s designed specifically to develop REST
interfaces on applications and databases running on mainframes. Because the tool has a deep
understanding of and is fully integrated with typical mainframe systems, such as IMS and CICS,
development of secure, robust, and fast REST interfaces is relatively easy. Moreover, the product comes
with an easy-to-use development environment for REST interfaces on mainframe systems. Figure 5
presents a high-level overview of IBM z/0S Connect EE.

N Figure 5 /BM z/0S
Mainframe Connect EE is an API
Clientapp 1 gateway designed
. 6 specifically to develop
BM . Jative IMS RES; /nzcj;’rfaces ;n
. applications an
Client app 2 z/0S Connect APIs ’
Enterprise Edition d"tf’b"ses running on
- mainframes.
Clientapp n
DB2
“ J

IBM z/0OS Connect EE supports a long list of IBM subsystems, including CICS, IMS, WebSphere Application
Server, WebSphere MQ, and Db2. With IBM z/0S Connect EE retrieval-like REST APIs can be developed to
retrieve data, but also transactional APIs for doing updates, inserts, and deletes. Through integration with
IBM z/0S System Management Facility requests from the Cloud, mobile, and Web environments can be
tracked for auditing and governance purposes. Authorization rules can be specified with SAF Security to
indicate which users are allowed to invoke which APIs.

In IBM z/0S Connect EE one REST call is limited to invoke one data source. When a client app needs to
integrate data from, for example CICS and Db2, the integration can’t be executed by IBM z/0S Connect EE.
In other words, the product does not support data federation. This can be solved if one of the systems
supports data federation functionality. For example, IBM InfoSphere Federation Server can be used to let
Db2 access another data source. In this case, IBM z/OS Connect EE invoke a REST interface to Db2, Db2
asks Federation Server to do the integration with the other source.

Some client apps need to update two independent systems on the mainframe and the two updates must

be processed as one atomic transaction. IBM z/0OS Connect EE transactions doesn’t support distributed
transactions. A REST APl invokes one system and not two or more.

Copyright © 2018 R20/Consultancy, all rights reserved. @

Accelerating Digital Initiatives Using Data Virtualization to API-Enable Mainframe Applications and Data 10

N Figure 6
Mainframe Each client

IBM

app must
Z/0S Connect Cics include

Enterprise Edition
code to join

the results

“IDBC Unix of the two
Another API REST APIs.

APl Gateway

Clientapp 1

Client app 2

Clientapp n

Each client app has to
include code to join the
data sources together.

Figure 7
I IBM Mainframe The server
Clientapp 1
= Z’IOS Cannect CicsS app
Enterprise Edition includes
] code to join
ElEnizEn? the result
) Unix of the REST
Clientapp n
°P The server app includes that of the
code to join the data result
sources together. coming
from
Oracle.

8 Data Virtualization Servers as API Gateways

Introduction to Data Virtualization — Besides an APl gateway another technology can be used to externalize
older systems through a REST interface, namely data virtualization. This section briefly introduces data
virtualization. For more information see the whitepapers “Making Mainframe Data Available for the Entire

Organization*” and “Enriching Big Data Using Data Virtualization®.”

Data virtualization servers allow the decoupling of data consumers from data stores; see Figure 8. A data
virtualization server presents all the data stored in a heterogeneous set of data stores as a single logical
database. Data consumers don’t have to be aware of where and how the data is stored; all of the details
of data storage are hidden for the data consumers. They don’t have to know or care about whether the

4 Rick F. van der Lans, “Making Mainframe Data Available for the Entire Organization”, July 2014; see
http://info.rocketsoftware.com/Making-Mainframe-Data-Available-for-the-Entire-Organization.html

> Rick F. van der Lans, “Enriching Big Data Using Data Virtualization”, July 2014; see http://info.rocketsoftware.com/enriching-big-
data-using-data-virtualization.html

Copyright © 2018 R20/Consultancy, all rights reserved. @

Accelerating Digital Initiatives Using Data Virtualization to API-Enable Mainframe Applications and Data 11

data they’re using is coming from a SQL database, an IMS database, or plain VSAM files. They don’t have
to be aware that data from multiple data stores have to be joined, nor do they have to know whether
they are accessing a SQL database, a Hadoop cluster, a NoSQL database, a web service, or simply one or
more flat files. The structure of the data stores is hidden as well; data consumers only see the data in the
way that’s convenient for them, and they only see data that is relevant to their task. This is all achieved by
decoupling data consumers from data stores.

production analytics internal mobile)
application & reporting portal website dashboard
_— e =
= |\|Z{|!!Ii|[>3 = — == 00F ©
‘) - — = iﬂ
Logical Data Warehouse Architecture]

uuslili;l&t.;'%nd‘-ﬁf“ E Jﬂ HE—
__unstructured L8

production - data gf data & e d bigdata i ivat \
1 S » private)
databases warehouse R = W@ Y stores e data (- _,)
_— data marts ESB social external
applications media data data

Figure 8 With data virtualization, data consumers are decoupled from the data stores.

The primary goal of this decoupling is to get a higher level of flexibility. For example, changes made to the
data stores don’t automatically mean that reports must be changed as well, and vice versa. Or, replacing
one data store technology by another is easier when that data store is “hidden” behind the logical data
warehouse architecture. With data virtualization, adopting big data is relatively easy, access to real-time
data is less complex for data consumers, and dealing with cloud-based data becomes simple.

In a nutshell, the key advantages of using data virtualization are agility and simplicity.

Data Virtualization and REST — Besides being able to access all kinds of data stores, a data virtualization
server also supports a wide range of APls. For example, applications and tools can access the data through
all kinds of APIs, including JDBC/SQL, SOAP, and REST.

Developing a REST interface with a data virtualization server is relatively straightforward. When a so-
called virtual table has been defined, developers only have to indicate that a REST interface is required.
Defining a REST interface involves selecting an input parameter and determining the structure of the
resulting JSON data structure.

Copyright © 2018 R20/Consultancy, all rights reserved. @

Accelerating Digital Initiatives Using Data Virtualization to API-Enable Mainframe Applications and Data 12

Data Virtualization and API Gateway — Data virtualization servers offer all the functionality API gateways do.
But besides transforming a native API into another API, the former group offer more features for
transforming, integrating, filtering, aggregating, and cleansing the data before it’s passed on to the calling
application.

Use Cases of Data Virtualization — Data virtualization technology supports a larger set of use cases then API
gateways. Here are some of the popular use cases of data virtualization:

e Development of a logical data warehouse to offer business users a more agile business
intelligence environment

e Development of a data lake for data scientists and other investigative business users

e Simplifying access to big data storage technologies, such as Hadoop and NoSQL

e Democratizing data to make the entire data asset of an organization available to a wide range of
business users

The new use case for data virtualization is externalization of the internal systems; see Figure 9. Data

virtualization is used for this use case because it simplifies development of REST interfaces on legacy
systems. This new use case of data virtualization is sometimes referred to as data as a service.

9 Introduction to IBM Data Virtualization Manager for z/08S

Introduction to IBM Data Virtualization Manager for z/0S — IBM Data Virtualization Server manager for z/0S
(IBM DVM) is designed specifically to integrate data sources on the mainframe data and to integrate
mainframe data with off-mainframe data. IBM DVM can efficiently access all the well-known mainframe
systems, such as CA IDMS, IBM CICS, Db2 z/0S, IMS TM & DB, Software AG Adabas and Natural. It can
efficiently and smartly transform all these non-relational data structures into flat, relational data
structures. In addition, typical mainframe file systems, such as sequential files and VSAM files, can be
accessed. The product has taken advantage of IBM’s data integration standard DRDA (Distributed
Relational Database Architecture) by which it can access many SQL database servers, including IBM Db2
LUW and PureData for Analytics (formerly called Netezza), Oracle, and Microsoft SQL Server.

To streamline integration with big data, IBM DVM includes a capability for MongoDB’s NoSQL database
that transforms mainframe data into a binary form of JavaScript Object Notation (JSON) referred to as
BSON. MongoDB uses JSON documents in order to store records, similar to how tables and rows store
records in SQL database. MongoDB represents these JSON documents in a binary-encoded format called
BSON®. BSON extends the JSON model to provide additional data types and to be efficient for encoding
and decoding within different languages.

The Architecture of IBM DVM — To efficiently access the mainframe data sources, IBM DVM runs on the zI/IP
processor’ (System Z Integrated Information Processor). These processors are designed to handle
specialized workloads, such as large queries on Db2, Java, and Linux, and divert processing away from the
mainframe’s central processors. The importance is that by running on zIIP processors, IBM DVM doesn’t

6 MongoDB Architecture, see http://www.mongodb.com/json-and-bson
7 See http://www.ibmsystemsmag.com/mainframe/administrator/performance/add_some_zIIP_to_your_mainframe/

Copyright © 2018 R20/Consultancy, all rights reserved. @

Accelerating Digital Initiatives Using Data Virtualization to API-Enable Mainframe Applications and Data 13

interfere with mission critical enterprise applications running on the general purpose central processors
and thus effectively reduces mainframe processing usage and reduces costs.

Figure 9 Data
w Server 1 Virtualization can be
used to offer REST
interfaces to client apps
and act as a super API
Clientapp 1 | gateway.
Data Server 2
. — API
Client app 2 | virtualization m
panaet
Client app i
Server n
AP
System 5

The strong points of IBM DVM are:

e Efficient database access to a wide range of popular mainframe data sources.

e High performance data architecture utilizing parallelism (I/0 and MapReduce).

e Highly secure - integration of the data sources takes place on the mainframe itself and existing
data security systems are not bypassed.

10 The Synergistic Effect of Combining IBM DVM and IBM z/0S Connect EE

Combining IBM DVM with IBM z/0S Connect EE — Many of the limitations of IBM z/0OS Connect EE listed in
Section 7 can be avoided by combining IBM DVM and IBM z/0OS Connect EE to create a powerful API
gateway for developing REST interfaces on mainframe and non-mainframe sources. This combined
architecture is presented in Figure 10. The two products are seamlessly integrated. Developers familiar
with working with IBM z/0S Connect EE don’t even have to see that they’re using IBM DVM.

Benefits of Combining IBM DVM with IBM z/0S Connect EE — In this combined architecture, IBM z/OS Connect
EE brings to the table an easy to use environment (Studio) for developing REST interfaces, efficient and
secure access of mainframe systems, robust access, and a scalable solution. IBM DVM extends this with
the following features:

Access to Mainframe Sources: Where IBM z/0OS Connect provides a RESTful interface to mainframe
applications, IBM DVM allows for the development of REST interfaces that access mainframe data sources
residing on mainframes, including Adabas, IMS DB, IDMS, System Management Facility (SMF), VSAM and
physical sequential files.

Copyright © 2018 R20/Consultancy, all rights reserved. @

Accelerating Digital Initiatives Using Data Virtualization to API-Enable Mainframe Applications and Data 14

£ B e “
. Non-mainframe:
Unix, Windows, ...
S —
IBM Data IBM Data
IBM 2/ C!S Cr:m‘n‘ect Virtualization Virtualization
Enterprise Edition Manager for /05 Manager for /05
Clientapp 1
cIcs Adabas Db2 LUW

IBM IMS IM5 DB S5qL Server

Client app 2 z/0S Connect
Enterprise Edition WAS IDMS Oracle
MongaDB
Client app n
Db2 VSAM Others

Data Virtualization

Manager for z/0S Non z/0S

w

Figure 10 /BM DVM and IBM z/0S Connect EE can work together as one integrated APl gateway that offers access to
a large set of data sources, including those running on and outside IBM mainframes.

Access to Non-Mainframe Sources: IBM DVM supports access to data sources not residing on
mainframes, including SQL database servers, NoSQL databases such as MongoDB, and big data
technologies such as Spark and Hadoop. This is important because many large organizations, besides
having a large installed base of applications on the mainframe, use more and more applications not
residing on mainframes.

Multi-Source REST Calls: REST interfaces can be developed with IBM DVM that combine multiple data
sources through the product’s “standard” features such as the federated join. Two tables can be joined
together inside one virtual table definition. This joined virtual table can then be used as the source for a
REST API. For example, in IBM DVM a virtual table can be defined that joins data from IMS on a mainframe
with Oracle on a Unix machine. Next, a REST interface can be developed for this virtual table. Developers
of the customer-facing app accessing this REST interface won’t see that data comes from two systems.

Multi-Source Transactions: IBM DVM supports transactions that span multiple sources. For example, one
transaction doing inserts in Db2 on the mainframe and deletes on a Microsoft SQL Server running on a
Windows machine can be treated as one atomic transaction. A REST interface can be developed for such a
transaction. Every client application invoking this API feels as if it’s working with one source system.

Transformation Features: As befits a data virtualization server, IBM DVM offers many features to
transform data from the source system before it’s send back to the client application. Data can be
aggregated, filtered, joined, concatenated, unioned, etc. The full power offered by the SQL query
language can be deployed to turn the data into the right structure for the APIl. No programming in a low-
language is required.

Copyright © 2018 R20/Consultancy, all rights reserved. @

Accelerating Digital Initiatives Using Data Virtualization to API-Enable Mainframe Applications and Data 15

Minimal Interference: As indicated in Section 9, because IBM DVM runs on zIIP processor there is minimal
interference on the workload of operational systems.

11 Closing Remarks

Digital transformation is on the agenda of countless organizations; commercial and non-commercial. For
some it will be a long journey. For most it entails development of customer-facing apps and externalizing
legacy systems through APIs allowing third party apps to retrieve data and business logic.

For those organizations with a massive investment in databases and systems running on mainframes,
implementing REST interfaces is a technological challenge. In general, APl gateways simplify the
development of REST APIs. IBM z/0OS Connect EE is an APl gateway designed specifically to develop fast,
robust, and secure REST APIs for subsystems such as CICS, IMS, WebSphere Application Server,
WebSphere MQ, and DB2. The easy-to-use development environment allows for fast development, but
does not provide access to non-IBM sources, no access to non-mainframe sources, single-source REST
calls, and single-source transactions.

Extending IBM z/OS Connect EE with IBM DVM overcomes these limitations. IBM DVM integrates
seamlessly with IBM z/0S Connect EE, providing developers with a single solution to build REST APIs for a
larger set of sources, including non-IBM sources on the IBM mainframe and sources running on other
platforms than the mainframe. Additionally, IBM DVM can integrate data from sources allowing APls to be
developed to show data from multiple systems in an integrated fashion.

Besides allowing the development of REST APIs, because it’s a full-blown data virtualization server, IBM
DVM can also be used for other use cases, such as the development of logical data warehouses and data
lake for data scientists, simplifying access to big data storage technologies, and for democratizing data.
This will be a reuse of the investment made in IBM DVM and will help organizations with other aspects of
their digital transformation.

Copyright © 2018 R20/Consultancy, all rights reserved.

Accelerating Digital Initiatives Using Data Virtualization to API-Enable Mainframe Applications and Data 16

About the Author

Rick F. van der Lans is an independent analyst, consultant, author, and lecturer specializing in data
warehousing, business intelligence, big data, database technology, and data virtualization. He works for
R20/Consultancy (www.r20.nl), which he founded in 1987.

Rick is chairman of the annual European Business Intelligence and Analytics Conference (organized
annually in London). He writes for Techtarget.com?® B-eye-Network.com® and other websites. He
introduced the business intelligence architecture called the Data Delivery Platform in 2009 in a number of
articles'® all published at B-eye-Network.com. The Data Delivery Platform is an architecture very similar to
the logical data warehouse.

He has written several books. His latest book is Data Virtualization for Business Intelligence Systems'®.
Published in 1987, his popular Introduction to SQL*? was the first English book on the market devoted
entirely to SQL. After almost thirty years, this book is still being sold, and has been translated into several
languages, including Chinese, German, Italian, and Dutch.

For more information please visit www.r20.nl, or send an email to rick@r20.nl. You can also get in touch
with him via LinkedIn and Twitter (@Rick_vanderlans).

8 See http://www.techtarget.com/contributor/Rick-Van-Der-Lans

9 See http://www.b-eye-network.com/channels/5087/articles/

10 see http://www.b-eye-network.com/channels/5087/view/12495

11 R.F. van der Lans, Data Virtualization for Business Intelligence Systems, Morgan Kaufmann Publishers, 2012.

12 R.F. van der Lans, Introduction to SQL; Mastering the Relational Database Language, fourth edition, Addison-Wesley, 2007.

Copyright © 2018 R20/Consultancy, all rights reserved. @

