
®

WHITE PAPER

Nested Relational
Databases

2

1 Table of Contents

2 Introduction

2 Abstract

3 Basic Relational Database Technology

4 Normalization of Relational Databases

7 Relationship Relations

8 Limits of 1NF Relational Databases

9 Eliminating the 1NF Constraint

9 Nested Relational Databases

10 Nested Tables

12 Implicit Relationship Relations

13 Technical Advantages of Nested Relational Databases

14 Conversion of Databases

14 Mapping Hierarchical Data to Nested Relational Databases

15 Performance of Converted Legacy Systems

16 Appendix A: Questions and Answers

16 Nested Relational Databases and the Industry

16 Nested Relational Database Technology

17 Nested Relational Database Compatibility

18 Bibliographical References

Contents

3

Nested Relational
Databases

Introduction

Abstract
This paper discusses technical advantages represented by nested relational

database technology. We focus on the removal of the requirement that relational

databases conform to the first normal form (atomic attributes). Nested relational

databases are technically called non-first-normal-form (NF2) databases, but are

commonly referred to as MultiValue or extended relational databases.

We explain the difference between traditional relational databases, such as

Oracle, MySQL and SQL Server to the Rocket MultiValue databases (principally

the ability to nest tables and store complex data structures). Next, we outline the

implications of this technology for the user of relational databases. We conclude

by answering questions that are frequently asked about nested relational

databases. An extensive bibliography of published material concerning nested

relational databases is provided.

4

Basic Relational Database Technology
The well-known and widely-used relational database systems, including the Rocket MultiValue

databases, Rocket UniData®, Rocket UniVerse™ and Rocket D3®, all conform to the basic relational

model first proposed by Dr. E. F. Codd in 1969, and since refined by Codd and others. The relational

model, unlike other data models, has a rigorous mathematical definition that is beyond the scope of this

discussion.

However, the basic technology shared by all relational databases can be summarized as:

• The database system maintains a clear distinction between the logical views of the data presented to

the user and the physical structure of the data, as it is stored. The user does not need to understand

the physical structure of the data in order to access and manage the data in the database.

• A simple logical data structure is easily understood by users who are not database technologists.

Data are stored in tables. Each cell of a table contains an attribute value. Attributes in the same

column are members of a set. Attributes in the same row are members of an ordered n-tuple. The

n-tuples in the table form a relation, from which comes the term relational as applied to databases.

Each table has one or more columns that contain the key to the table. The attributes in the key

uniquely identify each relation.

Figure 1. The relational model provides a simple, logical structure—the table—that stores attributes
in rows and columns. The n-tuples of a row are a relation, from which the model gets its name.

• A high-level language is provided for accessing the sets (rows and columns) of the table, and for

joining (combining) tables that have a common set of attributes (one or more columns containing

the same attributes). The SQL language, which has been standardized by the American National

Standards Institute (ANSI), fulfills this role, although many vendors provide other methods for

accessing data.

5

Codd’s proposal went considerably beyond just providing this model, however. It also included:

• Relational calculus, which is a mathematically rigorous definition of the “set operations” that a

relational database should support for manipulation of tables.

• Rules defining how a relational database should operate. The rules cover matters ranging from the

database access that must be provided for users to issues of data security.

All of the commercial relational databases, including the nested relational databases, conform to the

relational calculus. A database that did not conform would produce results that were inconsistent with

other relational databases. All of the commercial relational databases conform to a great majority of

the rules (100% compliance is not necessary and no relational database attains it). A SQL statement

operating on a given set of data produces consistent results when run on any of the commercial

relational databases.

Normalization of Relational Databases
Normalization is a prominent aspect of relational database theory. Normalization addresses how data

should be organized within a database in order to make the database as compact and easy to manage

as possible, and to ensure that is produces consistent results. Normalization rules provide guidelines

for defining the schema (design) of a relational database. Simply put, the rules specify how a database

should be divided into tables and also how the tables should be linked together. The two major

objectives of normalization are:

1. Minimize the duplication of data.

2. Minimize the number of attributes that must be updated when changes are made to the database,

thereby making maintenance of the data easier and reducing the possibility of error.

Figure 2. This table includes nested data—the part numbers and quantities, also called repeating
groups—and therefore does not conform to the first normal form (1NF).

6

Of the five ways to normalize data, called normal forms, three were initially defined by Codd3,4,5 and two

have since been defined by others. In order for a database to conform to the first normal form (1NF),

attributes must be atomic; that is, an attribute must not be an n-tuple and therefore cannot be a set, list

or, most importantly, a table or a complex data structure. This means that tables cannot be nested in

a 1NF database. Figure 2 shows a nested table that does not conform to 1NF. Figure 3 illustrates how

creating a separate customer and order table, and creating a relation in the customer table for each part

that is ordered, eliminates the nesting of parts.

Adherence to the first normal form is a matter of the design of the database and the choices made

during implementation. It is common to fully normalize a database during the design phase but then

to denormalize during implementation in order to meet acceptable performance requirements. If the

database does not support non-atomic attributes and chooses to denormalize for performance, the

user must create multiple columns (e.g. order1, order2). This can make it very difficult to create simple,

meaningful SQL statements to retrieve accurate results. In a nested relational database, the ability to

support nested tables allows the user to create a single orders column, or a group of related columns

(orders, parts, qty) that is nested or multi-valued. The nested relational SQL can then easily retrieve the

correct results.

The second through fifth normal forms (hereafter the higher normal forms) define certain conditions

for each of the normal forms that must be met in order for the database to conform to that normal form.

For example, the second normal form declares that if (1) a table has a multivalued key and (2) contains

an attribute that depends on only part of a multivalued key, then (3) that attribute should be moved to

a separate table. The conversion of the tables in Figure 3 necessary to achieve 2NF conformance is

shown in Figure 4. The example in Figure 4 illustrates how conforming to 2NF can reduce the amount

of data stored in the database and the number of attributes that must be modified when a change is

made. In Figure 3, customer number is stored once for every part that is ordered. In Figure 4, customer

number is stored only for each order. If it were necessary to change the number assigned to a customer,

there would be many fewer fields that would require updating.

Figure 3. To create a table that conforms to first normal form (1NF), the table of Figure 2 is divided
into tables that contain no repeating groups.

7

Note, however, that if the characteristics of the data were such that many orders were for a single part,

rather than for several parts as shown, the 2NF-conformant schema would actually require more storage

because the order number key attribute must be stored twice for each order—once in the Order Table

and again in the Order Customer Table. In that case, the schema of Figure 3 rather than of Figure 4

would be optimal.

Third, fourth and fifth normal form (3NF, 4NF and 5NF) similarly define increasingly stringent

requirements, and adherence to each can reduce storage space, the number of updates required, or

both. (For a detailed definition of the higher normal forms, see Codd3,4,5.)

Figure 4. 2NF compliance is achieved by creating a separate Order Customer table to move
customer number out of each Order relation.

While the physical conformance to the first normal form depends on the design of the database

software, conformance to the higher normal forms depends on the database schema. With any

relational database software, the designer can devise a schema that does not conform to any of the

higher normal forms. It is impossible for the relational database software to determine with certainty that

a given schema fails to conform; therefore, conformance is a concern of the database designer rather

than a discipline that can be enforced by the database system. In any event, as illustrated, an apparent

failure to conform does not necessarily mean that the database schema is less than optimal.

Relationship Relations
Figure 4 illustrates an artifice of normalization: the relationship relation. The Order Customer table

contains relationship relations; so called because they do not serve to store data, but rather to keep

track of relationships between tables (in this case, the relationship between customers and orders).

The requirement to have tables to store relationship relations has two disadvantages: (1) the additional

tables confuse the design by adding elements that are not part of the fundamental data structure;

and (2) the number of tables in the database increases. These factors cause maintenance and

storage requirements to increase, cause system response times to lengthen because of the additional

processing required, and make queries and other operations more difficult because SQL statements

must be more complicated.

8

Limits of 1NF Relational Databases
With any relational database system, conformance to the higher normal forms is completely up to the

database designe—the software imposes no constraints that prevent attaining an optimal schema,

whether fully conformant or not. But databases that provide for the storage of atomic values give the

designer no choice but to conform to 1NF. Conforming with the higher normal forms generally produces

an optimal schema, albeit at the expense of greater complexity. However, database conformance with

1NF often increases the amount of storage used and makes maintenance more difficult. In addition, and

most importantly, it greatly increases the processing required to produce results, while still making the

schema more complex. Here’s why (compare Figure 2 and Figure 4):

1. The number of tables increases from one to three, including the table for a relationship relation.

2. Normalization of the tables requires the order number and customer number attributes to be stored

twice for each order.

3. Producing a report to show the data (as in Figure 1) requires that the three tables be joined. Joins are

highly compute-intensive operations.

For some potential users of relational databases, the joins that would be required to resolve relationship

relations in 1NF databases would affect performance enough to preclude the use of relational

databases. For example, 1NF relational databases are generally acknowledged to be unacceptable for

CAD/CAM systems, which are used to design mechanical parts for manufacturing11.

Why? One reason is that CAD/CAM data are inherently hierarchical in nature and the database structure

used to store the part information must be traversed very quickly in order to display the part on the

user’s screen within an acceptable response time. Hundreds or thousands of join operations are

required to display a complex part. These joins simply cannot be performed fast enough to provide

acceptable display times. That is just one of several reasons 1NF databases are not used for CAD/CAM

data. Such systems instead use proprietary hierarchical databases that provide high performance but

are expensive to develop and maintain.

Apart from performance considerations, 1NF relational databases also have practical limitations for many

applications. While any hierarchical or network database schema can validly be translated to a 1NF

relational database schema, the practical considerations in doing so are daunting. Take for example a

mechanical part. A hierarchical structure naturally and compactly stores the data that describe the part.

The translation (mapping) of that hierarchical structure to a 1NF schema, however, is far from intuitive

and leaves a confusing, awkward, complicated set of interrelated tables, including many tables for

storing relationship relations. As a practical matter, such schemas are not possible to implement. These

same considerations apply to many other types of data.

9

Eliminating the 1NF Constraint
Consideration of the limitations imposed by the 1NF constraint leads naturally to the question,

“Can the 1NF constraint be removed from relational databases without invalidating the underlying

relational model?”

As mentioned earlier, the relational database model has a mathematically rigorous definition to

guarantee predictable, correct results on any database systems that faithfully implement the model.

Detailed examination1,7,9,10,12,13 has been made of the relational model with the 1NF constraint removed.

The analysis has proven that the resulting model is equally robust. In other words, removing the 1NF

constraint will not cause a relational database to produce invalid or inconsistent results as long as the

database conforms to the higher normal forms.

When the 1NF constraint is removed—when nested tables are allowed—the database is technically

described as a non-first-normal form (NF2) database but generally referred to as a nested relational or

extended relational RDBMS. Database theoreticians accept nested or extended relational databases

as valid relational databases. There is a body of literature on nested relational databases. Readers who

wish to learn about the mathematical underpinnings of the nested relational model are encouraged to

consult the Bibliographical References index.

Nested Relational Databases
Rocket Software is the industry leader with its implementation of the “best of breed” nested relational

data model. A nested relational database management system is a relational database management

system that has been extended in ways not possible for 1NF databases. SQL is supported as a data

query language for nested relational databases. Since a nested relational database provides advanced

capabilities, the SQL implementation must provide capabilities beyond those in the SQL standard, but

with the standard being fully supported as a subset. The extensions support new relational operations

that are not possible with a 1NF database.

It is important to note that nested relational databases can create 1NF views of a nested relational

database to maintain semantic compatibility with applications and tools written for a 1NF database.

Further, it is possible to optimize a nested relational database to provide the same performance for such

applications as would be obtained if the applications were modified to use nested tables. The Rocket

U2 nested relational databases implement those optimizations. That means it is possible to implement

precisely the schema of any existing 1NF database as a nested relational database. Normally, the only

reason to do so is to maintain compatibility to 1NF SQL. Database programmers and administrators

must forego the benefits of the simpler schema of a nested relational database in that case.

10

Nested Tables
As mentioned in the Introduction, a basic tenet of the relational model is to provide the user a simple

logical structure for data that is clearly distinct from whatever physical structure is employed. Nested

relational databases fully support this tenet and further this goal by simplifying the logical structure of

many databases by eliminating relationship relation tables.

Figure 5. The SQL statements required to define and access the attributes of these 1NF tables are given
in the text.

Nested tables are implemented through straightforward and natural extensions to SQL. For example, the

following SQL statement would create the 1NF tables illustrated in Figure 5:

CREATE TABLE CUSTOMER_TABLE (CUST# CHAR(9)

DISP (“Customer #”), CUST_NAME CHAR (40)

DISP (“Customer Name”));

CREATE TABLE ORDER_TABLE (ORDER_# NUMBER (6)

DISP (“ORDER #”), PART_# NUMBER (6) DISP (“Part

#”), QTY NUMBER (3) DISP(“Qty.”));

CREATE TABLE ORDER_CUST (CUST_# CHAR (9)

DISP (“Customer #”), ORDER_# DISP (“Order #”)

Number (6));

By comparison, to define the nested table illustrated in Figure 6, the following SQL statement would

replace the above:

CREATE TABLE NESTED_TABLE (CUST# CHAR (9) DISP (“Customer #),

CUST_NAME CHAR (40) DISP (“Customer Name”),

ORDER_# NUMBER (6) DISP (“Order #”) SM (“MV”) ASSOC (“ORDERS”),

PART_# NUMBER (6) DISP (Part #”) SM (“MS”) ASSOC (“ORDERS”),

QTY NUMBER (3) DISP (“Qty.”) SM (“MS”) ASSOC (“ORDERS”));

11

The Rocket MultiValue databases implement nested tables as repeating attributes and repeating

groups of attributes that are associated. The SM clauses specify that the attribute is either repeating

(multivalued—”MV”) or a repeating group (multi-subvalued—”MS”). The ASSOC clause associates the

attributes within a nested table. If desired, the Rocket MultiValue databases can support several nested

tables within a base table.

Figure 6. The nested relational database table is equivalent to those in Figure 5. The SQL statements
required to define and access this table and to convert it to 1NF are given in the text.

The following standard SQL statement would be required to process the 1NF tables of Figure 5 to

produce the report shown in Figure 6:

SELECT CUSTOMER_TABLE.CUST#, CUST_NAME, ORDER_TABLE.ORDER_#, PART_#, QTY

FROM CUSTOMER_TABLE, ORDER_TABLE, ORDER_CUST

WHERE CUSTOMER_TABLE.CUST_# = ORDER_CUST.CUST_# AND ORDER_CUST.ORDER_# = ORDER

TABLE.ORDER#;

Several additional SQL statements also would be required to format the report as shown in Figure 6.

Producing the same report from the nested table would require only the following SQL statement:

SELECT * FROM NESTED_TABLE;

Of course, Rocket can flatten a nested relational database (for example, when necessary to provide data

to be stored in a 1NF database). To do so, the UNNEST clause of the SQL SELECT statement is used.

The following SQL statement populates the Order Customer table shown in Figure 5.

INSERT INTO ORDER_CUSTOMER (CUST_#, ORDER_#)

SELECT CUST#, ORDER_# FROM NESTED_TABLE UNNEST ORDER_#);

Alternatively, the following SQL statement creates an ASCII text table to export the data of the Order

Customer table to a 1NF database:

SELECT CUST#, ORDER_# FROM NESTED_TABLE UNNEST ORDER_# TO ASCII_TABLE;

12

Implicit Relationship Relations
As noted earlier, the requirement for tables (such as the Order Customer table in Figure 5) that store

relationship relations is eliminated with nested relational databases. The information contained in relationship

relations is required in nested relational databases just as it is in 1NF databases. In figure 6, it is still

necessary to store the relationship between customers and orders; however, with a nested relational

database, those relationship relations are implicit, rather than explicit.

Implicit relationship relations exist whenever one table is nested within another. Relationship relations are

maintained automatically and very efficiently by the nested relational database. The designer, on the other hand,

must define explicit relationship relations as additional tables in the database schema, with all of the additional

complexity, maintenance and potential for error that the 1NF definition entails. Implicit relationship relations

make the database schema simpler and allow it to directly reflect the relations between data in the database.

The requirement for explicit relationship relations does arise from time to time even when designing a

nested relational database. In those cases the necessary tables can be defined, of course, just as with a

1NF database.

Technical Advantages of Nested Relational Databases
The following sections of this paper discuss the advantages of nested relational database technology for

specific types of applications; however, nested relational databases have significant advantages for any

database designed to store data that are naturally inclined to repeat:

• The database schema is simpler, with fewer tables to define and maintain.

• The database schema more directly mirrors the relationships inherent in the data stored, thereby making

the schema easier to define and easier for others to understand.

• Many time-consuming and compute-intensive joins are eliminated.

• Redundant data for storing relationship relations are eliminated to save storage space.

• Accessing data is simpler and more straightforward. The required SQL statements are simpler and

more direct.

Furthermore, these advantages come to nested relational database users with no offsetting disadvantages:

• A nested relational database is a true relational database. It is based on an equally valid mathematical

model and provides all of the advantages of a 1NF database.

• 1NF-compliant databases can be implemented on a nested relational database and are fully supported.

• Existing SQL is fully supported because nested relational database SQL contains the ANSI-standard

as a subset.

Conversions between nested and 1NF databases are easily accomplished.

13

Conversion of Databases
Virtually all enterprises that have information systems based on mainframe technology need to

convert those systems to an open systems client/server environment or even to the Web paradigm.

That includes many challenging tasks, and among the most difficult of those is the conversion of

several large, mission-critical databases from a hierarchical database product such as IBM’S IMS or a

networked database product.

IMS and IDMS have two distinct advantages compared to the most advanced 1NF relational databases:

1. The underlying relations in the enterprise’s business data map easily to the database.

2. The databases are fast.

Nested relational databases ease the task of conversion to relational technology by providing the same

advantages in a relational database. The following sections describe how.

Mapping Hierarchical Data to Nested Relational
Databases
By their very nature, data relationships for business information tend to be hierarchical. Management

structures are typically hierarchical, products are composed of hierarchies of parts and subassemblies,

and markets are segmented hierarchically into geographical areas, and so on. The ease of mapping

such structures onto a hierarchical database such as IMS is obvious—the designer simply maps a

hierarchy to a hierarchical structure. The problems of mapping a hierarchy to the “flat” structure required

for a 1NF relational database are equally obvious— because many relationship relation tables are

required, as you have seen in the previous sections.

Figure 7. The previously used order database is inherently a hierarchical structure that maps naturally
onto a nested relational database.

14

The nesting of tables provided by a nested relational database allows for the direct mapping of

hierarchically related information into a relational database. As illustrated in Figure 7, the customer order

database is a hierarchical structure. It maps directly and easily into a nested relational database, but

mapping into a 1NF database is much more complex and inefficient.

Performance of Converted Legacy Systems
The database products used for legacy databases may be proprietary, difficult and expensive to

maintain, hard to change, and difficult to program, but they are also fast. A legacy database converted

to a 1NF relational database often will not provide the responsiveness of the mainframe databases

primarily because of the new requirement for performing joins. Joins are not required, for example, in

hierarchical databases such as IMS. Relations between the different elements of the database are “hard-

wired” into the hierarchical structure based on the results that the database is designed to produce, so

the database produces those results very quickly. In any relational database, even a nested relational

database, joins are slow, compute-intensive operations.

However, in a nested relational database, the need to perform joins is dramatically reduced by the

database’s ability to maintain implicit relationship relations, as explained earlier. In a sense, the implicit

relationship relations are similar to the hard-wired hierarchical relations of IMS, in that they eliminate

the need for joins and provide very fast data access. However, unlike the IMS hierarchy, the implicit

relationship relations are as easily changed as anything else in a relational database. Thus, nested

relational databases combine the performance advantages of hierarchical systems with the flexibility and

ease-of-use of relational databases.

While nested relational databases cannot guarantee that relational database performance will equal that

of proprietary mainframe systems, they do promise much better performance for legacy systems than

can ever be obtained from a 1NF database.

15

Appendix A:
Questions and Answers

Nested Relational Databases and the Industry
Is it true that mainstream vendors are moving toward nested relational databases?

Because of the limitations of 1NF relational databases, especially for storing complex data structures, all

commercial relational databases have begun adopting extended relational technology; however, Rocket

has a technological lead of many years over its closest competitor.

Can’t other database vendors just add nested relations onto their existing database engines?

Most relational database vendors have originally architected and implemented their products based on the

assumption that attributes are always atomic. From their inception, the Rocket MultiValue databases were

designed from the ground up to support nested relations. Adding this technology to existing traditional

relational databases will necessitate either complete re-architecting of the database or emulation of this

capability using the existing engine. Further, the Rocket MultiValue implementation, unlike others, is not

limited to a single nested table.

Are nested relational databases accepted by the academic community as adhering to a valid

relational model?

Yes. A large body of literature documents the validation of nested relational databases (see the

Bibliographical References index.)

Nested Relational Database Technology
Are all nested relational databases relational?

Although the term “extended” or “nested” is usually applied only to relational databases, any database that

stores non-atomic attributes is nested. For example, any CODASYL database is a nested database.

What is the difference between a nested relational database and a network database?

A network database such as a CODASYL database is not a relational database, although it may be termed

a nested database. The differences between a true relational database and a non-relational database are:

relational databases are based on a rigorous mathematical foundation and provide a standardized access

language (SQL), other databases typically do not.

16

Isn’t a nested relational database harder to use than a 1NF database?

Just the opposite is true. A nested relational database is easier to design, create, and use. The ability

of a nested relational database to store nested relations means that the relations in the application data

map much more directly onto the schema of the database. The ability to automatically and transparently

maintain relationship relations reduces the overall complexity of the database by reducing the number of

extraneous tables used to store relationship relations. The extensions to standard SQL that support nested

tables allow you to write simpler, shorter SQL statements.

Nested Relational Database Compatibility
Can I use my existing SQL with a nested relational database?

If the schema of the nested relational database matches the schema of the 1NF database for which

the SQL was written, the SQL can be used without modification and will produce the same results. If

you choose to take advantage of the advanced capabilities of the nested relational database to create

nested relations, then you will need to modify only those portions of the existing SQL affected by those

enhancements. In most cases, the SQL becomes simpler and more compact.

Can a nested relational database conform to the second, third and fourth normal forms? Does it

need to?

A nested relational database can conform to all of the higher forms. The requirements for conformance are

the same as those for a 1NF database.

Can you translate a nested relational database into a traditional unnested relational database?

First note that although a nested relational database need not conform to 1NF, there is nothing to prevent

conformance. If necessary for compatibility, a nested relational database can store data with precisely the

same schema used in a 1NF database from another vendor.

When it is necessary to convert a nested relational database containing nested relations to 1NF, the Rocket

MultiValue database SQL and the data access language developed by research labs provide an “UNNEST”

operation to easily convert a nested database to 1NF for or provide an unnested view of the nested

relations.

17

Bibliographical References
1. Abiteboul, S., and Bidoit, N. “Non First Normal Form Relations to Represent Hierarchically

Organized Data,” Proceedings of 2nd ACMSIGACT/SIGMOD Symposium on Principles of

Database Systems, March 1984, pp 191–200.

2. Arisawa, H., Moriya, K., and Miura, T. “Operations and the Properties On Non-First-Normal-

Form Relational Databases.” Proceedings of 9th International Conference On Very Large Data

Bases. October 1983, pp 197–204.

3. Codd, E. “A Relational Model of Data for Large Shared Data Banks,” Communications of the

ACM. Vol. 13, No. 6, June 1970, pp 377–387.

4. Codd, E. “Further Normalization of the Data Base Relational Model,” Database Systems.

Edited by Rustin, R. Prentice-Hall, pp 33–64.

5. Codd, E. “Relational Completeness of Data Base Sublanguages,” Data Base Systems. Edited

by Rustin, R. Prentice-Hall, pp 65–98.

6. Dadam, P., and Linnemann, V. “Advanced Information Management (AIM): Advanced Database

Technology for Integrated Applications,” IBM Systems Journal, Vol. 28 No. 4, 1989 pp 661–681.

7. Fischer, Patrick C. and Thomas, Stan J. “Operators for Non-First-Normal-Form Relations,”

Proceeding of IEEE COMPSAC ‘83, Chicago, November 1983, pp 464–475.

8. Garnett, L. and Tansel, A. “Equivalence of the Relational Algebra and Calculus for Nested

Relations,” Computers Math. Applic. Vol. 23, No. 10, 1992, pp 3–25.

9. Kitagawa, H., and Kunii, T.L. The Unnormalized Relational Data Model for Office Form

Processor Design. Tokyo: Springer-Verlag, 1989.

10. Makinouchi, A. “A Consideration On Normal Form of Not-Necessarily-Normalized Relation in

 the Relational Data Model,” Proceedings of 3rd International Conference on Very Large Data

 Bases, October 1977, pp 447–453.

11. Roth, M., Korth, H., and Silberschatz, A. “Extended Algebra and Calculus for Nested

 Relational Databases,” ACM Transactions on Database Systems, Vol. 13 No. 4, December

 1988, pp 389–417.

12. Schek, H., and Pistor, P. “Data Structures for an Integrated Data Base Management and

 Information Retrieval System,” Proceedings of 8th International Conference on Very Large

 Data Bases. September 1982, pp 197–207.

13. Schek, H., and Scholl, M. “The Relational Model with Relation-Valued Attributes,” Information

 Systems, Vol 11, No. 2. 1986, pp 137–147.

© Rocket Software, Inc. or its affiliates 1990 – 2019. All rights reserved. Rocket and the Rocket Software logos are registered
trademarks of Rocket Software, Inc. Other product and service names might be trademarks of Rocket Software or its affiliates.
2019-01 RS MV WP Nested Relational v4

rocketsoftware.com

info@rocketsoftware.com

US: 1 855 577 4323

EMEA: 0800 520 0439

APAC: 612 9412 5400

twitter.com/rocket

www.linkedin.com/company/rocket-software

www.facebook.com/RocketSoftwareInc

blog.rocketsoftware.com

