

D3 Security – Field Encryption

Lab Guide

Developed by
D3 MVU Team

D 3 S e c u r i t y – F i e l d E n c r y p t i o n L a b G u i d e

U2 University 2015 Page 1

© 2015 Rocket Software, Inc. All Rights Reserved.
Lab materials may not be reproduced in whole or in part without prior written permission of Rocket Software.

Lab Overview

Abstract

The purpose of this lab is to demonstrate one way in which dynamic field
level encryption may be implemented using callr and callx triggers that use
the %encrypt() and %decrypt() FlashBASIC functions. The API for these

two functions is presented, which enables the programmer to encrypt and
decrypt an arbitrary string, followed by a sample program demonstrating
their use, and finally sample callr and callx triggers which are used to
implement dynamic field level encryption.

This lab used a controlled environment at MV University. You can do this
exercise in your environment if you download a special account – FLE. This can
be found at our github site:

https://github.com/RocketSoftware/multivalue-lab

D 3 S e c u r i t y – F i e l d E n c r y p t i o n L a b G u i d e

MV University 2015 Page 2

©2015 Rocket Software, Inc. All Rights Reserved.
Lab materials may not be reproduced in whole or in part without prior written permission of Rocket
Software.

About the Lab Environment

The lab environment uses the following:

Desirable Prerequisites:

 Some BASIC programming skills

 Ability to edit items (the Update Processor is used in the examples)

 D3 10.1 Linux or D3 9.2 Windows

 FLE Account (Field Level Encryption)

Lab Overview

 Time estimate: 60 minutes

 There are four sections to this lab:

– Section 1: Overview of the FlashBASIC encryption API

– Section 2: Using the %encrypt() and %decrypt() functions

– Section 3: Using a callx trigger to encrypt a field

– Section 4: Using a callr trigger to decrypt a field

D 3 S e c u r i t y – F i e l d E n c r y p t i o n L a b G u i d e

MV University 2015 Page 3

©2015 Rocket Software, Inc. All Rights Reserved.
Lab materials may not be reproduced in whole or in part without prior written permission of Rocket
Software.

Exercise 1: Overview of the FlashBASIC encryption API

Purpose of the Exercise
This exercise will show you the FlashBASIC encryption/decryption API.

After this exercise you will be familiar with the:
 crypto.inc FlashBASIC include

 %encrypt() and %decrypt() API

Exercise Instructions

Perform the following steps:

__ 1. Log in to D3.

a. Do one of the following:

 On Linux, from the shell, enter d3.

 On Windows, Telnet to localhost.

b. Respond to the prompts as shown below:

user id: dm

master dictionary: FLE

__ 2. The %eecrypt() and %encrypt() API.

The function declarations are identical:

code = %decrypt(params, inputString, outputString, &outputStringLength)

code = %encrypt(params, inputString, outputString, &outputStringLength)

Input arguments:

params: Structure (dynamic array) used to provide the function meta-data.

See the “Crypto parameter structure” step below.

inputString: The text that will be either encrypted or decrypted.

Output arguments:

outputString: The encrypted or decrypted text.

outputStringLength: Number of characters used in the outputString buffer.

These functions also return a result code. See the “Result code” step below.

__ 3. Review the dm,bp,includes crypto.inc FlashBASIC include item.

There are multiple methods to review. For example:

D 3 S e c u r i t y – F i e l d E n c r y p t i o n L a b G u i d e

MV University 2015 Page 4

©2015 Rocket Software, Inc. All Rights Reserved.
Lab materials may not be reproduced in whole or in part without prior written permission of Rocket
Software.

 ed dm,bp,includes crypto.inc, or

 u dm,bp,includes crypto.inc, or

 ct dm,bp,includes crypto.inc

There are two sections of interest, each described in its own step below.

 Result codes

 Crypto parameter structure

__ 4. Result Code.

The functions return one of the following result codes:

 Crypto$Result$Success: The call was successful. outputString and

outputStringLength are valid.

 Crypto$Result$Failed: The call failed. The cause is unknown.

 Crypto$Result$InvalidKey: The length of the key provided in the parameter

structure is not 16 bytes (AES128).

 Crypto$Result$OutputBufferTooSmall: The buffer provided to hold the

outputString was too small. When encrypting, the outputString buffer must

be at least twice the size of the inputString buffer. When decrypting, the

outputString buffer must be at least the same size of the inputString buffer.

 Crypto$Result$NoEncryption: The encryption libraries are not loaded.

__ 5. Crypto parameter structure.

The crypto parameter structure is a dynamic array. It must be properly populated

and passed in as the first argument to the functions.

 CryptoPAlgorithm: The encryption algorithm to use. For example,

Crypto$Algorithm$AES128.

 CryptoPInputLength: The length of the inputString buffer.

 CryptoPOutputLength: The number of characters available in the

outputString buffer. When encrypting, the outputString buffer should be at

least twice the size of the inputString buffer. This is to allow for the worst

case scenario in which each input character is encrypted to a reserved

character, which requires escaping it into two characters. When decrypting, the

outputString buffer should be at least the same size as the inputString

buffer. This is to allow for the worst case scenario in which each input character

D 3 S e c u r i t y – F i e l d E n c r y p t i o n L a b G u i d e

MV University 2015 Page 5

©2015 Rocket Software, Inc. All Rights Reserved.
Lab materials may not be reproduced in whole or in part without prior written permission of Rocket
Software.

is not decrypted from a reserved character, meaning that the outputString

buffer will have as many characters as the inputString buffer, not fewer.

 CryptoPClearKey: The key used to encrypt or decrypt the inputString. For

AES128 it must be 16 bytes long.

Exercise 1 summary: Familiarity with the crypto.inc include item and the %encrypt() and

%decrypt() API.

End of Exercise 1

D 3 S e c u r i t y – F i e l d E n c r y p t i o n L a b G u i d e

MV University 2015 Page 6

©2015 Rocket Software, Inc. All Rights Reserved.
Lab materials may not be reproduced in whole or in part without prior written permission of Rocket
Software.

Exercise 2: Using the %Encrypt() and %Decrypt() functions

Purpose of the Exercise
This exercise will demonstrate how to encrypt an arbitrary string using the

FlashBASIC %encrypt() function and decrypt it using %decrypt().

After this exercise you will be able to:
 Encrypt an arbitrary string using the FlashBASIC %encrypt() function

 Decrypt the encrypted string using the FlashBASIC %decrypt() function

Exercise Instructions

Perform the following steps:

__ 1. Log in to D3.

a. Do one of the following:

 On Linux, from the shell, enter d3

 On Windows Telnet to localhost

b. Respond to the prompts as shown below:

user id: dm

master dictionary: FLE

__ 2. Review the FLE,bp, test program.

There are multiple methods to review. For example:

 ed FLE,bp, test, or

 u FLE,bp, test, or

 ct FLE,bp, test

Each section of interest is described in its own step below.

__ 3. Get input.

This part of the program interactively gathers user input. The plain text string and

the 16 character key are collected.

__ 4. Prepare the %encrypt() input.

The crypto parameter structure described in the previous exercise is populated.

D 3 S e c u r i t y – F i e l d E n c r y p t i o n L a b G u i d e

MV University 2015 Page 7

©2015 Rocket Software, Inc. All Rights Reserved.
Lab materials may not be reproduced in whole or in part without prior written permission of Rocket
Software.

Notice that the output buffer is allocated at twice the size of the input buffer. This

is to allow for the worst case scenario in which each input character is encrypted to

a reserved character, which requires escaping it into two characters.

encryptedTextBufferSize = 2 * plainTextLength

Char encryptedText[encryptedTextBufferSize]

__ 5. Call %encrypt(), check the result, and extract the encrypted text.

The %encrypt() function is called.

Notice that encryptedTextLength argument is passed in with the “&” prefix. This

passes the address of encryptedTextLength to %encrypt(), which allows it to be

set. encryptedText, on the other hand, was declared as a char array, so its value

is already an address.

Char encryptedText[encryptedTextBufferSize]

result = %encrypt(cryptoParams, plainText, encryptedText,

&encryptedTextLength)

Also, notice how the encrypted text is extracted. This is necessary so that

anything beyond the end of the actual string is eliminated.

encryptedText = encryptedText[1, encryptedTextLength]

__ 6. Display the plain text and encrypted text as hexadecimal strings.

The mx conversion is used to convert the strings to hexadecimal.

The hexadecimal strings are then displayed.

__ 7. Prepare the %decrypt() input.

Like the %encrypt() function, the crypto parameters structure is populated. The

outputString buffer is allocated at the same size as the inputString buffer. This

is to allow for the worst case scenario in which each input character is not decrypted

from a reserved character, meaning that the outputString buffer will have as

many characters as the inputString buffer, not fewer.

__ 8. Call %decrypt(), check the result, and extract the decrypted text.

Like the %encrypt() function, notice how the arguments are passed and the

decrypted text is extracted.

__ 9. Display the decrypted text as a hexadecimal string and compare it to

the original plain text.

D 3 S e c u r i t y – F i e l d E n c r y p t i o n L a b G u i d e

MV University 2015 Page 8

©2015 Rocket Software, Inc. All Rights Reserved.
Lab materials may not be reproduced in whole or in part without prior written permission of Rocket
Software.

This step demonstrates (verifies) that encrypting and decrypting produces the

same string as the original plain text.

__ 10. Run the test program.

a. At the TCL prompt, enter test.

b. Enter a string.

c. Enter a 16 character key.

The plain text, encrypted text, and decrypted text are displayed as hexadecimal

strings. If the original plain text and decrypted text match, and they should, the

test program indicates that encryption and decryption succeeded.

Exercise 2 summary: Using %encrypt() and %decrypt() to encrypt and decrypt and arbitrary

string.

End of Exercise 2

D 3 S e c u r i t y – F i e l d E n c r y p t i o n L a b G u i d e

MV University 2015 Page 9

©2015 Rocket Software, Inc. All Rights Reserved.
Lab materials may not be reproduced in whole or in part without prior written permission of Rocket
Software.

Exercise 3: Using a callx trigger to encrypt a field

Purpose of the Exercise
This exercise will demonstrate dynamically encrypting field data when it’s

written to a file by using a callx trigger and the %encrypt() function.

After this exercise you will be able to:
Encrypt field data as it’s written to a file

Exercise Instructions

Perform the following steps:

__ 1. Log in to D3.

a. Do one of the following:

 On Linux, from the shell, enter d3

 On Windows Telnet to localhost

b. Respond to the prompts as shown below:

user id: dm

master dictionary: FLE

__ 2. Review the FLE,bp, encrypt program.

 There are multiple methods to review. For example:

o ed FLE,bp, encrypt, or

o u FLE,bp, encrypt, or

o ct FLE,bp, encrypt

Each section is described in its own step below.

__ 3. Main

This is the main part of the program.

A flag (part of the data in the item) is checked to see if the attribute to be encrypted

is already encrypted. If it is, it returns without doing anything. This is important.

Since the encryption algorithm is symmetric, calling %encrypt() again with the

encrypted data will decrypt it.

The Crypto helper subroutine is called to encrypt the data.

D 3 S e c u r i t y – F i e l d E n c r y p t i o n L a b G u i d e

MV University 2015 Page 10

©2015 Rocket Software, Inc. All Rights Reserved.
Lab materials may not be reproduced in whole or in part without prior written permission of Rocket
Software.

If the Crypto call is successful, the attribute in the item is updated with the

encrypted data and a flag is set indicating that it is currently encrypted.

__ 4. Prepare the %encrypt() input.

This section of code is in the inline helper subroutine “Crypto”.

The crypto parameter structure described in an earlier exercise is populated.

Notice that the output buffer is allocated at twice the size of the input buffer. This

is to allow for the worst case scenario in which each input character is encrypted to

a reserved character, which requires escaping it into two characters.

encryptedTextBufferSize = 2 * plainTextLength

Char encryptedText[encryptedTextBufferSize]

__ 5. Call %encrypt(), check the result, and extract the encrypted text.

This section of code is in the inline helper subroutine “Crypto”.

The %encrypt() function is called.

Notice that encryptedTextLength argument is passed in with the “&” prefix. This

passes the address of encryptedTextLength to %encrypt(), which allows it to be

set. encryptedText, on the other hand was declared as a char array, so its value

is already an address.

Char encryptedText[encryptedTextLength]

result = %encrypt(cryptoParams, plainText, encryptedText,

&encryptedTextLength)

Also, notice how the encrypted text is extracted. This is necessary so that

anything beyond the end of the actual string is eliminated.

string = encryptedText[1, encryptedTextLength]

__ 6. Add the callx trigger to the file defining item.

This step can be accomplished using your preferred method of editing items. The

use of the Update Processor is described here.

a. From TCL, enter:

ud secretdata

b. Press <Enter> until the cursor is on the line titled correlative. If you pass it,

use ^B to go back up a line.

c. Enter the following.

callx FLE,bp, encrypt

D 3 S e c u r i t y – F i e l d E n c r y p t i o n L a b G u i d e

MV University 2015 Page 11

©2015 Rocket Software, Inc. All Rights Reserved.
Lab materials may not be reproduced in whole or in part without prior written permission of Rocket
Software.

d. Press ^XF to save the file defining item and exit.

e. Compile and catalog the encrypt program by entering the following command:

compile-catalog FLE,bp, encrypt (o

Also, on D3 Windows, if the system is not configured to always reload

subroutines, you will need to exit the line and log on again if the program has

been run and then recompiled.

__ 7. Create an item.

This step can be accomplished using your preferred method of editing items. The

use of the Update Processor is described here.

a. From TCL, enter:

u secretdata <item-id>

where <item-id> is an item-id of your choice.

b. Type something into each attribute, pressing <Enter> after each entry. If the

Update Processor is not being used, make sure only attribute 1-3 have data.

c. Press ^XF to save the item and exit.

__ 8. Display the item that was just created.

a. From TCL, enter:

ct secretdata

Notice that the phone number does not appear. This is the piece of data that

was encrypted and now appears as garbage in attribute 3.

Also notice the number 1 in attribute 4. This is the flag maintained by trigger

programs indicating whether or not the phone number is currently encrypted.

The callx dynamically encrypted the data as it was written to storage.

Exercise 3 summary: Dynamically encrypting field data when it’s written to a file by using a

callx trigger and the %encrypt() function.

End of Exercise 3

D 3 S e c u r i t y – F i e l d E n c r y p t i o n L a b G u i d e

MV University 2015 Page 12

©2015 Rocket Software, Inc. All Rights Reserved.
Lab materials may not be reproduced in whole or in part without prior written permission of Rocket
Software.

Exercise 4: Using a callr trigger to decrypt a field

Purpose of the Exercise
This exercise will demonstrate dynamically decrypting field data when it’s read

from a file by using a callr trigger and the %decrypt() function.

After this exercise you will be able to:
 Decrypt field data as it’s read from a file

Exercise Instructions

Perform the following steps:

__ 1. Log in to D3.

a. Do one of the following:

 On Linux, from the shell, enter d3

 On Windows Telnet to localhost

b. Respond to the prompts as shown below:

user id: dm

master dictionary: FLE

__ 2. Review the FLE,bp, decrypt program.

There are multiple methods to review. For example:

 ed FLE,bp, decrypt, or

 u FLE,bp, decrypt, or

 ct FLE,bp, decrypt

Each section is described in its own step below.

__ 3. Main

This is the main part of the program.

A flag (part of the data in the item) is checked to see if the attribute to be encrypted

is already encrypted. If it is not encrypted, it returns without doing anything. This

is important. Since the decryption algorithm is symmetric, calling %decrypt() again

with the decrypted data will encrypt it.

The Crypto helper subroutine is called to decrypt the data.

D 3 S e c u r i t y – F i e l d E n c r y p t i o n L a b G u i d e

MV University 2015 Page 13

©2015 Rocket Software, Inc. All Rights Reserved.
Lab materials may not be reproduced in whole or in part without prior written permission of Rocket
Software.

If the Crypto call is successful, the attribute in the item is updated with the

decrypted data and a flag is set indicating that it is currently decrypted.

__ 4. Prepare the %decrypt() input.

This section of code is in the inline helper subroutine “Crypto”.

The crypto parameter structure described in an earlier exercise is populated.

The outputString buffer is allocated at the same size as the inputString buffer.

This is to allow for the worst case scenario in which each input character is not

decrypted from a reserved character, meaning that the outputString buffer will

have as many characters as the inputString buffer, not fewer.

decryptedTextBufferSize = encryptedTextLength

Char decryptedText[decryptedTextBufferSize]

__ 5. Call %decrypt(), check the result, and extract the decrypted text.

This section of code is in the inline helper subroutine “Crypto”.

The %decrypt() function is called.

Notice that decryptedTextLength argument is passed in with the “&” prefix. This

passes the address of decryptedTextLength to %decrypt(), which allows it to be

set. decryptedText, on the other hand was declared as a char array, so its value

is already an address.

Char decryptedText[decryptedTextBufferSize]

result = %decrypt(cryptoParams, encryptedText, decryptedText,

&decryptedTextLength)

Also, notice how the decrypted text is extracted. This is necessary so that

anything beyond the end of the actual string is eliminated.

string = decryptedText[1, decryptedTextLength]

__ 6. Add the callr trigger to the file defining item.

This step can be accomplished using your preferred method of editing items. The

use of the Update Processor is described here.

a. From TCL, enter:

ud secretdata

b. Press <Enter> until the cursor is on the line titled correlative. If you pass it,

use ^B to go back up a line.

D 3 S e c u r i t y – F i e l d E n c r y p t i o n L a b G u i d e

MV University 2015 Page 14

©2015 Rocket Software, Inc. All Rights Reserved.
Lab materials may not be reproduced in whole or in part without prior written permission of Rocket
Software.

c. The callx trigger from the previous exercise should already be present. Press

^V to insert space for another value.

d. Enter the following:

callr FLE,bp, decrypt

e. Press ^XF to save the file defining item and exit.

f. Compile and catalog the decrypt program by entering the following command:

compile-catalog FLE,bp, decrypt (o

Note that typically the trigger program (decrypt) needs to be compiled (Flash

compiled on D3 Windows), but this has already been done in the FLE demo

account. Also, on D3 Windows, if the system is not configured to always reload

subroutines, you will need to exit the line and log on again if the program has

been run and then recompiled.

__ 7. Optionally, create an item.

This step may be skipped. The item from the previous exercise may be used. Skip

ahead to the “Display the item that was just created” step.

This step can be accomplished using your preferred method of editing items. The

use of the Update Processor is described here.

a. From TCL, enter:

u secretdata <item-id>

where <item-id> is an item-id of your choice.

b. Type something into each attribute, pressing <Enter> after each entry.

c. Press ^XF to save the item and exit.

__ 8. Display the item that was just created.

a. From TCL, enter:

ct secretdata

Notice that the phone number now appears in plain text. This is the piece of

data that was encrypted by the callx trigger using %encrypt(). It has now

been decrypted by the callr trigger using %decrypt().

Also notice the number 0 in attribute 4. This is the flag maintained by trigger

programs indicating whether or not the phone number is currently encrypted.

The callr dynamically decrypted the data as it was read. This is in memory

only. The image in storage is still encrypted.

D 3 S e c u r i t y – F i e l d E n c r y p t i o n L a b G u i d e

MV University 2015 Page 15

©2015 Rocket Software, Inc. All Rights Reserved.
Lab materials may not be reproduced in whole or in part without prior written permission of Rocket
Software.

Exercise 4 summary: Dynamically decrypting field data when it’s read from a file by using a

callr trigger and the %decrypt() function.

End of Exercise 4

