
A
rticle R

eprint

Bloor Research International Ltd  
+44 (0)1494 291 992

info@Bloorresearch.com
www.Bloorresearch.com   

Uniface rides on a Rocket
A report from some Rocket Uniface workshops
David Norfolk ©Bloor October 2022

structured, although developing exception-enabled 
Uniface applications is a little different to developing 
in other languages, and Uniface documents best 
practice for exceptions here. For instance, you should 
only process an exception for specific error codes 
– “catching” every possible error and returning the 
dreaded “something unexpected happened, press OK 
to continue” is not good practice! Exception-handling 
has to be designed and tested just as any other part 
of the application is. For example, in some parts of an 
application “customer does not exist” may be a serious 
error and should stop processing; but while acquiring 
a new customer, it may be the expected situation. 
Deciding whether to stop execution is important – if 
a purchased item hasn’t been entered into the system 
properly, you don’t want to set the price to £0.00 and 
continue processing the order. And, always remember 
that exceptions and error situations often go along 
with worried and stressed customers, especially if 
large sums of money are involved, so that how you 
handle exceptions (the user experience) can gain you 
a customer for life – or lose them forever.

Runtime exception handling is generally a vital 
part of business automation and is often neglected. 
Exception handling is partly an aspect of Application 
Assurance and is an important part of automation 
that must be built with the same care, expertise and 
good practice as the rest of an automated system. 
Often it isn’t, perhaps because of unrealistic time 
pressures, or because developers take pride in the 
working process and hate rooting around in the 
mess when things are going wrong. Which is why 
Application Security attacks often focus on the 
processing of bad data and error conditions (areas 
that may not even get much testing in practice, 
whatever the good intentions).

I think that the takeaways from these workshops 
are that Uniface is an important part of Rocket 
Software and is being actively developed. It is still 
an effective, modern, high-productivity platform 
for developing business automation in mutable 
organisations. And that a properly designed 
eLearning facility is a great idea.

I have always taken an interest in Uniface; I first 
met it back in the last century when the IT group in 
the bank I was working for was blocking a business-
led purchase of Uniface, because it was so much 
more productive than the IT’s chosen C++ based 
development strategy. Dysfunctional or not?

Anyway, Uniface now belongs to Rocket 
Software and I’ve been attending a couple of 
Uniface workshops, just to see how things are 
going. Pretty well, I think – morale seems to be 
good. Uniface is still being actively developed 
and aspects of the Uniface Agile culture and its 
eLearning capabilities are being migrated into the 
rest of Rocket Software. Uniface is a tier 1 product 
for Rocket, the presenters told me.

Properly designed eLearning is, or should be, 
a major facilitator for stakeholder engagement in 
the Mutable Business. Taking a course in something 
achieves buy-in, reading documentation, less so. 
And eLearning can be available to any stakeholder, 
especially if you encourage self-education on 
the firm’s time (with some sort of portable 
accreditation, perhaps, and the involvement of 
project management). Learn more about Uniface 
eLearning here.

The first workshop was about the use of 
containers and Docker with the current version 
of Uniface. Later versions of Uniface have always 
been able to work with containers and Docker, in 
fact – just as long as you were pretty expert in 
both Docker and Uniface. Now that containers are 
becoming ubiquitous, Docker containers are being 
built into Uniface itself – which makes things a 
lot easier for Uniface developers and is the sort 
of thing one expects for an actively-maintained 
low-code, high productivity, development platform. 
I am no Uniface coder, but the workshop (with 
practical coding examples) made it all look pretty 
straightforward to me.

The second workshop was on Uniface exception 
handling facilities. As well as its classic error 
handling (which is prone to human error and can 
impact performance), Uniface provides a structured 
approach to exception handling. This is now built 
into its templates and example code snippets (the 
technical details are documented here. I think this 
Uniface approach to exceptions is good, and well-

https://www3.rocketsoftware.com/rocketd3/support/documentation/Uniface/104/uniface/proc/exceptionHandling/ExceptionsBestPractices.htm
https://learn.uniface.com/
https://www3.rocketsoftware.com/rocketd3/support/documentation/Uniface/104/uniface/proc/exceptionHandling/exceptionHandling.htm

