
Rocket®

EBOOK

Top 5 Myths of
Green-Screen
Modernization
The Evolution of
Application
Modernization
Technology

What screen am I on?
Custom GUIs for green-screen

applications require a link

between the GUI and the host

screens that provide information.

In other words, the GUI solution

must “know” what screens are

being sent by the host to show

the right GUIs.

Many products provide manual

screen identification that requires

developers to navigate to each

desired screen in the live

application and manually select

the characteristics that make

that screen unique. If the

developer accidentally selects a

conditional field, or uses the

same characteristics to identify two different

screens, identification can fail. If a screen

changes, the developer must manually

navigate to the screen again and re-identify it.

More advanced modernization solutions

automatically maintain screen identifications.

Screen maps are incorporated into a

repository, and are automatically assigned

unique identifiers. Since this process is

based on the screen maps, rather than the

live data stream, it’s more accurate. The

links between GUIs and the green screens in

the repository are automatically checked

and updated whenever the

change-management process is initiated.

Automated screen identification ensures an

accurate link between your GUI and your

host applications—without requiring the

developer to spend any time maintaining

these critical links.

Introduction

Imagine that it’s your first day at a new job. You’re working for a company that relies on timely
and accurate access to customer information. You might be a claims processor at an
insurance company, a customer service representative at a bank, or a sales manager at a car
dealership. One of the first tasks your supervisor gives you is to spend your initial three weeks
on the job learning a business-critical computer application that looks like it’s from 1975. How
would that make you feel?

Surprisingly, many organizations still ask their employees to use green-screen (or text-based)
user interfaces to work with essential business information, typically because these systems,
while venerable, still perform critical tasks for the organization. If you manage employees who
use these applications, you recognize that while green-screen applications do important work,
they’re hard to learn (even intimidating) for unfamiliar workers, and often they’re only accessible
with terminal emulation software. In addition, these applications are closed to the outside
world: They can’t make use of application programming interfaces (APIs) from third-party
vendors that would improve the user experience, and green-screen application functionality
can not be accessed by other, more modern web and mobile applications.

Green screens are both a business and a technology problem. How can a business stay
competitive when it takes three weeks to train employees on green-screen applications? How
can a group of customer service representatives help customers on the phone when they must
navigate through several green-screen applications simultaneously to implement the
customer’s request? How can a business share select critical business functionality with
employees and partners, or allow for sharing with other applications, when that functionality is
not accessible for external application integration?

From a technical standpoint, the problem is simply that green-screen applications are no
longer the de facto standard for user interfaces. Host-based applications run businesses,
because they’re reliable, secure, and they house decades of business rules and information.
Application developers need a way to help businesses use the information and business logic
from these systems, but deliver it in a modern and flexible way.

1TOP 5 MYTHS OF GREEN-
SCREEN MODERNIZATION

What screen am I on?
Custom GUIs for green-screen

applications require a link

between the GUI and the host

screens that provide information.

In other words, the GUI solution

must “know” what screens are

being sent by the host to show

the right GUIs.

Many products provide manual

screen identification that requires

developers to navigate to each

desired screen in the live

application and manually select

the characteristics that make

that screen unique. If the

developer accidentally selects a

conditional field, or uses the

same characteristics to identify two different

screens, identification can fail. If a screen

changes, the developer must manually

navigate to the screen again and re-identify it.

More advanced modernization solutions

automatically maintain screen identifications.

Screen maps are incorporated into a

repository, and are automatically assigned

unique identifiers. Since this process is

based on the screen maps, rather than the

live data stream, it’s more accurate. The

links between GUIs and the green screens in

the repository are automatically checked

and updated whenever the

change-management process is initiated.

Automated screen identification ensures an

accurate link between your GUI and your

host applications—without requiring the

developer to spend any time maintaining

these critical links.

2

Rocket®

TOP 5 MYTHS OF GREEN-
SCREEN MODERNIZATIONGetting Past the Myths

There are ways to turn green-screen

applications into more current and useful

web-based applications, or allow for sharing

with other applications. These methods offer

value by building on the logic embedded in

green-screen applications, rather than

requiring source-code changes or

screen-scraping.

Modernization approaches that use the

application logic can be vastly more

powerful, efficient, and easier to maintain

than screen-scrapers. This paper is

intended to debunk some common myths

about modernization technologies, and

demonstrate what advanced modernization

strategies can enable you to do compared

with more traditional approaches.

What screen am I on?
Custom GUIs for green-screen

applications require a link

between the GUI and the host

screens that provide information.

In other words, the GUI solution

must “know” what screens are

being sent by the host to show

the right GUIs.

Many products provide manual

screen identification that requires

developers to navigate to each

desired screen in the live

application and manually select

the characteristics that make

that screen unique. If the

developer accidentally selects a

conditional field, or uses the

same characteristics to identify two different

screens, identification can fail. If a screen

changes, the developer must manually

navigate to the screen again and re-identify it.

More advanced modernization solutions

automatically maintain screen identifications.

Screen maps are incorporated into a

repository, and are automatically assigned

unique identifiers. Since this process is

based on the screen maps, rather than the

live data stream, it’s more accurate. The

links between GUIs and the green screens in

the repository are automatically checked

and updated whenever the

change-management process is initiated.

Automated screen identification ensures an

accurate link between your GUI and your

host applications—without requiring the

developer to spend any time maintaining

these critical links.

3

Rocket®

TOP 5 MYTHS OF GREEN-
SCREEN MODERNIZATIONMyth #1: Modernization Solutions

are Just Green Screens in Browsers

A basic requirement for green-screen

modernization is the ability to dynamically

display a GUI version of any application

Customized interfaces give users
the same host information with
much improved functionality.

M
yt

h

screen. This typically involves setting up

generic templates or rules that interpret

each screen on the fly and present a GUI

version of the screen to the user. Dynamic

GUI is useful for deploying applications to

desktops or the web, but adds little

functional value from the user or business

perspective. It is sometimes referred to as

“green screen in a browser.”

The real value-add in screen-based

modernization projects lies in the ability to

rework the user experience to match today’s

business needs. Users need improved

application usability and workflow, plus

integration with other desktop- and

What screen am I on?
Custom GUIs for green-screen

applications require a link

between the GUI and the host

screens that provide information.

In other words, the GUI solution

must “know” what screens are

being sent by the host to show

the right GUIs.

Many products provide manual

screen identification that requires

developers to navigate to each

desired screen in the live

application and manually select

the characteristics that make

that screen unique. If the

developer accidentally selects a

conditional field, or uses the

same characteristics to identify two different

screens, identification can fail. If a screen

changes, the developer must manually

navigate to the screen again and re-identify it.

More advanced modernization solutions

automatically maintain screen identifications.

Screen maps are incorporated into a

repository, and are automatically assigned

unique identifiers. Since this process is

based on the screen maps, rather than the

live data stream, it’s more accurate. The

links between GUIs and the green screens in

the repository are automatically checked

and updated whenever the

change-management process is initiated.

Automated screen identification ensures an

accurate link between your GUI and your

host applications—without requiring the

developer to spend any time maintaining

these critical links.

web-based tools they require for their jobs.

Screens still form the basis for a customized

GUI; however, the screens behave more as

application-level APIs than direct user

interfaces.

While some older approaches focus on

“green screen in a browser,” current

modernization technologies combine

information from multiple green screens in

addition to the data on the current screen,

and present it to the user for a useful and

efficient application workflow.

4

Rocket®

TOP 5 MYTHS OF GREEN-
SCREEN MODERNIZATION

A basic requirement for green-screen

modernization is the ability to dynamically

display a GUI version of any application

screen. This typically involves setting up

generic templates or rules that interpret

each screen on the fly and present a GUI

version of the screen to the user. Dynamic

GUI is useful for deploying applications to

desktops or the web, but adds little

functional value from the user or business

perspective. It is sometimes referred to as

“green screen in a browser.”

The real value-add in screen-based

modernization projects lies in the ability to

rework the user experience to match today’s

business needs. Users need improved

application usability and workflow, plus

integration with other desktop- and

What screen am I on?
Custom GUIs for green-screen

applications require a link

between the GUI and the host

screens that provide information.

In other words, the GUI solution

must “know” what screens are

being sent by the host to show

the right GUIs.

Many products provide manual

screen identification that requires

developers to navigate to each

desired screen in the live

application and manually select

the characteristics that make

that screen unique. If the

developer accidentally selects a

conditional field, or uses the

same characteristics to identify two different

screens, identification can fail. If a screen

changes, the developer must manually

navigate to the screen again and re-identify it.

More advanced modernization solutions

automatically maintain screen identifications.

Screen maps are incorporated into a

repository, and are automatically assigned

unique identifiers. Since this process is

based on the screen maps, rather than the

live data stream, it’s more accurate. The

links between GUIs and the green screens in

the repository are automatically checked

and updated whenever the

change-management process is initiated.

Automated screen identification ensures an

accurate link between your GUI and your

host applications—without requiring the

developer to spend any time maintaining

these critical links.

web-based tools they require for their jobs.

Screens still form the basis for a customized

GUI; however, the screens behave more as

application-level APIs than direct user

interfaces.

While some older approaches focus on

“green screen in a browser,” current

modernization technologies combine

information from multiple green screens in

addition to the data on the current screen,

and present it to the user for a useful and

efficient application workflow.

5

Rocket®

TOP 5 MYTHS OF GREEN-
SCREEN MODERNIZATIONMyth #2: Keeping Host and GUI

in Sync is Hard

As any developer knows, maintaining APIs

can be a labor-intensive process. If an API

changes, anything that uses that API must

typically also be adapted. So, if a green

screen changes, how do you take that

change into account in your GUI?

Managing host application change is a key

differentiator between current modernization

technologies and a typical screen-scraping

approach. An effective modernization

solution uses your application screen maps1

during application development and

maintenance. Using a repository of screen

maps as a basis, developers can create and

maintain customized GUIs for applications

that include thousands of screens. When

screens change, an automated change

management feature enables you to easily

synchronize your GUI application with your

underlying screen “APIs.”

Host-to-GUI synchronization is actually a

two-part challenge:

• The GUI must know what screen(s) to
use to access information

• The GUI must know what host fields to
use on each screen

Traditional approaches expect you to

manually maintain the links between your

live green screens and your GUI. If a screen

changes, there is no automated way to

catch and apply the change. By registering

your application screen map files in an

XML-based repository, today’s

modernization solutions overcome these

synchronization challenges and provide a

complete foundation for application

development and maintenance.

Myth

What screen am I on?
Custom GUIs for green-screen

applications require a link

between the GUI and the host

screens that provide information.

In other words, the GUI solution

must “know” what screens are

being sent by the host to show

the right GUIs.

Many products provide manual

screen identification that requires

developers to navigate to each

desired screen in the live

application and manually select

the characteristics that make

that screen unique. If the

developer accidentally selects a

conditional field, or uses the

same characteristics to identify two different

screens, identification can fail. If a screen

changes, the developer must manually

navigate to the screen again and re-identify it.

More advanced modernization solutions

automatically maintain screen identifications.

Screen maps are incorporated into a

repository, and are automatically assigned

unique identifiers. Since this process is

based on the screen maps, rather than the

live data stream, it’s more accurate. The

links between GUIs and the green screens in

the repository are automatically checked

and updated whenever the

change-management process is initiated.

Automated screen identification ensures an

accurate link between your GUI and your

host applications—without requiring the

developer to spend any time maintaining

these critical links.

1 Mainframe applications typically use screen map types such as
BMS and MFS. System i applications typically use display files
(DSPF).

6

Rocket®

TOP 5 MYTHS OF GREEN-
SCREEN MODERNIZATION

As shown in this repository, the ability to keep track of screens is a key difference between screen-
scraping and modernizing.

What screen am I on?
Custom GUIs for green-screen

applications require a link

between the GUI and the host

screens that provide information.

In other words, the GUI solution

must “know” what screens are

being sent by the host to show

the right GUIs.

Many products provide manual

screen identification that requires

developers to navigate to each

desired screen in the live

application and manually select

the characteristics that make

that screen unique. If the

developer accidentally selects a

conditional field, or uses the

same characteristics to identify two different

screens, identification can fail. If a screen

changes, the developer must manually

navigate to the screen again and re-identify it.

More advanced modernization solutions

automatically maintain screen identifications.

Screen maps are incorporated into a

repository, and are automatically assigned

unique identifiers. Since this process is

based on the screen maps, rather than the

live data stream, it’s more accurate. The

links between GUIs and the green screens in

the repository are automatically checked

and updated whenever the

change-management process is initiated.

Automated screen identification ensures an

accurate link between your GUI and your

host applications—without requiring the

developer to spend any time maintaining

these critical links.

7

Rocket®

TOP 5 MYTHS OF GREEN-
SCREEN MODERNIZATION

What fields do I need?
As users work with your GUI, information

they enter or change is pushed back to

editable fields on the green screen. Therefore,

GUIs built over green-screen applications

require a link between the host fields on each

screen that provide the information and GUI

fields that enable users to interact with that

information.

A typical approach to addressing this

challenge is to rely on the developer to create

manual mappings based on the row/column

position of each host field on each screen.

Developers navigate live to each screen that

contains the fields they want, then point and

click and click on each individual field to

register it for use in the GUI. Solution

developers may not know that certain fields

change color, size, or position based on

program events, and therefore cannot take

these changes into account. They may be

unaware of conditional fields that only display

in certain circumstances. Without access to

the screen maps, these solutions place the

burden on the developer to discover changes

in field states and attributes. A more precise

method is clearly necessary.

A truly effective modernization solution offers

automatic host field mapping based on the

application field names and attributes from

the screen maps. Information about every

host field in the application becomes

available through the screen repository. When

developers have access to this information,

they can create solutions that encompass all

the host application possibilities—including

features such as detecting and acting upon

color and state changes and variable field

positions and sizes.

Using the true application field names also

reduces change management requirements,

What screen am I on?
Custom GUIs for green-screen

applications require a link

between the GUI and the host

screens that provide information.

In other words, the GUI solution

must “know” what screens are

being sent by the host to show

the right GUIs.

Many products provide manual

screen identification that requires

developers to navigate to each

desired screen in the live

application and manually select

the characteristics that make

that screen unique. If the

developer accidentally selects a

conditional field, or uses the

same characteristics to identify two different

screens, identification can fail. If a screen

changes, the developer must manually

navigate to the screen again and re-identify it.

More advanced modernization solutions

automatically maintain screen identifications.

Screen maps are incorporated into a

repository, and are automatically assigned

unique identifiers. Since this process is

based on the screen maps, rather than the

live data stream, it’s more accurate. The

links between GUIs and the green screens in

the repository are automatically checked

and updated whenever the

change-management process is initiated.

Automated screen identification ensures an

accurate link between your GUI and your

host applications—without requiring the

developer to spend any time maintaining

these critical links.

since the modernization solution interacts

with fields based on their true host names,

rather than their row and column positions on

the screen. If you move a field on the screen,

a modern solution can still interact with it

without changing the underlying field

definition.

8

Rocket®

TOP 5 MYTHS OF GREEN-
SCREEN MODERNIZATION

What fields do I need?
As users work with your GUI, information

they enter or change is pushed back to

editable fields on the green screen. Therefore,

GUIs built over green-screen applications

require a link between the host fields on each

screen that provide the information and GUI

fields that enable users to interact with that

information.

A typical approach to addressing this

challenge is to rely on the developer to create

manual mappings based on the row/column

position of each host field on each screen.

Developers navigate live to each screen that

contains the fields they want, then point and

click and click on each individual field to

register it for use in the GUI. Solution

developers may not know that certain fields

change color, size, or position based on

program events, and therefore cannot take

these changes into account. They may be

unaware of conditional fields that only display

in certain circumstances. Without access to

the screen maps, these solutions place the

burden on the developer to discover changes

in field states and attributes. A more precise

method is clearly necessary.

A truly effective modernization solution offers

automatic host field mapping based on the

application field names and attributes from

the screen maps. Information about every

host field in the application becomes

available through the screen repository. When

developers have access to this information,

they can create solutions that encompass all

the host application possibilities—including

features such as detecting and acting upon

color and state changes and variable field

positions and sizes.

Using the true application field names also

reduces change management requirements,

Rather than using row/column positions, an effective Web-enablement tool should offer automatic
host field mapping

What screen am I on?
Custom GUIs for green-screen

applications require a link

between the GUI and the host

screens that provide information.

In other words, the GUI solution

must “know” what screens are

being sent by the host to show

the right GUIs.

Many products provide manual

screen identification that requires

developers to navigate to each

desired screen in the live

application and manually select

the characteristics that make

that screen unique. If the

developer accidentally selects a

conditional field, or uses the

same characteristics to identify two different

screens, identification can fail. If a screen

changes, the developer must manually

navigate to the screen again and re-identify it.

More advanced modernization solutions

automatically maintain screen identifications.

Screen maps are incorporated into a

repository, and are automatically assigned

unique identifiers. Since this process is

based on the screen maps, rather than the

live data stream, it’s more accurate. The

links between GUIs and the green screens in

the repository are automatically checked

and updated whenever the

change-management process is initiated.

Automated screen identification ensures an

accurate link between your GUI and your

host applications—without requiring the

developer to spend any time maintaining

these critical links.

since the modernization solution interacts

with fields based on their true host names,

rather than their row and column positions on

the screen. If you move a field on the screen,

a modern solution can still interact with it

without changing the underlying field

definition.

9

Rocket®

TOP 5 MYTHS OF GREEN-
SCREEN MODERNIZATION

What fields do I need?
As users work with your GUI, information

they enter or change is pushed back to

editable fields on the green screen. Therefore,

GUIs built over green-screen applications

require a link between the host fields on each

screen that provide the information and GUI

fields that enable users to interact with that

information.

A typical approach to addressing this

challenge is to rely on the developer to create

manual mappings based on the row/column

position of each host field on each screen.

Developers navigate live to each screen that

contains the fields they want, then point and

click and click on each individual field to

register it for use in the GUI. Solution

developers may not know that certain fields

change color, size, or position based on

program events, and therefore cannot take

these changes into account. They may be

unaware of conditional fields that only display

in certain circumstances. Without access to

the screen maps, these solutions place the

burden on the developer to discover changes

in field states and attributes. A more precise

method is clearly necessary.

A truly effective modernization solution offers

automatic host field mapping based on the

application field names and attributes from

the screen maps. Information about every

host field in the application becomes

available through the screen repository. When

developers have access to this information,

they can create solutions that encompass all

the host application possibilities—including

features such as detecting and acting upon

color and state changes and variable field

positions and sizes.

Using the true application field names also

reduces change management requirements,

What screen am I on?
Custom GUIs for green-screen

applications require a link

between the GUI and the host

screens that provide information.

In other words, the GUI solution

must “know” what screens are

being sent by the host to show

the right GUIs.

Many products provide manual

screen identification that requires

developers to navigate to each

desired screen in the live

application and manually select

the characteristics that make

that screen unique. If the

developer accidentally selects a

conditional field, or uses the

same characteristics to identify two different

screens, identification can fail. If a screen

changes, the developer must manually

navigate to the screen again and re-identify it.

More advanced modernization solutions

automatically maintain screen identifications.

Screen maps are incorporated into a

repository, and are automatically assigned

unique identifiers. Since this process is

based on the screen maps, rather than the

live data stream, it’s more accurate. The

links between GUIs and the green screens in

the repository are automatically checked

and updated whenever the

change-management process is initiated.

Automated screen identification ensures an

accurate link between your GUI and your

host applications—without requiring the

developer to spend any time maintaining

these critical links.

since the modernization solution interacts

with fields based on their true host names,

rather than their row and column positions on

the screen. If you move a field on the screen,

a modern solution can still interact with it

without changing the underlying field

definition.

10

Rocket®

TOP 5 MYTHS OF GREEN-
SCREEN MODERNIZATION

One of the most pervasive myths about

modernization solutions is that they create

maintenance nightmares. This myth is

well-earned, because maintenance is a

genuine challenge with traditional solutions.

Because these solutions scrape live screens

for development, they offer no automated

way to accommodate for—or even be

aware of—host application changes. This

shifts the maintenance burden to the

developer, who is expected to identify and

react to these changes. This reactive

approach often means that maintenance is

not initiated until after users have already

experienced a problem.

As we’ve already touched upon, a

modernization solution should feature

change management technology designed

Myth #3: Most Modernization
Solutions Are Maintenance Nightmares

to keep application screens and

corresponding GUIs synchronized. This is a

critical point—accurate change

management reduces your application

maintenance burden and elevates the

quality and reliability of your modernized

solution.

When a solution uses a screen repository to

manage host-to-GUI and host-to-API screen

changes, ongoing maintenance becomes a

highly automated process. Developers can

proactively schedule synchronization with

the host application screens at any time.

The synchronization process updates the

screen repository with the latest screen

maps; makes corresponding updates to

screen identifications, host field information,

and the GUI; and produces a complete

Myth

report of all activities. These processes can

all run unattended (in batch mode), or can

be performed step-by-step by individual

developers. Work is typically limited to

adjusting the layout of the customized GUI

What screen am I on?
Custom GUIs for green-screen

applications require a link

between the GUI and the host

screens that provide information.

In other words, the GUI solution

must “know” what screens are

being sent by the host to show

the right GUIs.

Many products provide manual

screen identification that requires

developers to navigate to each

desired screen in the live

application and manually select

the characteristics that make

that screen unique. If the

developer accidentally selects a

conditional field, or uses the

same characteristics to identify two different

screens, identification can fail. If a screen

changes, the developer must manually

navigate to the screen again and re-identify it.

More advanced modernization solutions

automatically maintain screen identifications.

Screen maps are incorporated into a

repository, and are automatically assigned

unique identifiers. Since this process is

based on the screen maps, rather than the

live data stream, it’s more accurate. The

links between GUIs and the green screens in

the repository are automatically checked

and updated whenever the

change-management process is initiated.

Automated screen identification ensures an

accurate link between your GUI and your

host applications—without requiring the

developer to spend any time maintaining

these critical links.

to accommodate added fields on the host,

and customizing GUIs for new host screens.

You can also manage working files with

common source control tools such as SYN

or Git.

11

Rocket®

TOP 5 MYTHS OF GREEN-
SCREEN MODERNIZATION

One of the most pervasive myths about

modernization solutions is that they create

maintenance nightmares. This myth is

well-earned, because maintenance is a

genuine challenge with traditional solutions.

Because these solutions scrape live screens

for development, they offer no automated

way to accommodate for—or even be

aware of—host application changes. This

shifts the maintenance burden to the

developer, who is expected to identify and

react to these changes. This reactive

approach often means that maintenance is

not initiated until after users have already

experienced a problem.

As we’ve already touched upon, a

modernization solution should feature

change management technology designed

to keep application screens and

corresponding GUIs synchronized. This is a

critical point—accurate change

management reduces your application

maintenance burden and elevates the

quality and reliability of your modernized

solution.

When a solution uses a screen repository to

manage host-to-GUI and host-to-API screen

changes, ongoing maintenance becomes a

highly automated process. Developers can

proactively schedule synchronization with

the host application screens at any time.

The synchronization process updates the

screen repository with the latest screen

maps; makes corresponding updates to

screen identifications, host field information,

and the GUI; and produces a complete

report of all activities. These processes can

all run unattended (in batch mode), or can

be performed step-by-step by individual

developers. Work is typically limited to

adjusting the layout of the customized GUI

What screen am I on?
Custom GUIs for green-screen

applications require a link

between the GUI and the host

screens that provide information.

In other words, the GUI solution

must “know” what screens are

being sent by the host to show

the right GUIs.

Many products provide manual

screen identification that requires

developers to navigate to each

desired screen in the live

application and manually select

the characteristics that make

that screen unique. If the

developer accidentally selects a

conditional field, or uses the

same characteristics to identify two different

screens, identification can fail. If a screen

changes, the developer must manually

navigate to the screen again and re-identify it.

More advanced modernization solutions

automatically maintain screen identifications.

Screen maps are incorporated into a

repository, and are automatically assigned

unique identifiers. Since this process is

based on the screen maps, rather than the

live data stream, it’s more accurate. The

links between GUIs and the green screens in

the repository are automatically checked

and updated whenever the

change-management process is initiated.

Automated screen identification ensures an

accurate link between your GUI and your

host applications—without requiring the

developer to spend any time maintaining

these critical links.

to accommodate added fields on the host,

and customizing GUIs for new host screens.

You can also manage working files with

common source control tools such as SYN

or Git.

12

Rocket®

TOP 5 MYTHS OF GREEN-
SCREEN MODERNIZATION

M
yth

Myth #4: Modernization Projects
are Unmanageable

Some tools are used to quickly complete a

UI project at the last minute. Because of this

perception, project management is often not

What screen am I on?
Custom GUIs for green-screen

applications require a link

between the GUI and the host

screens that provide information.

In other words, the GUI solution

must “know” what screens are

being sent by the host to show

the right GUIs.

Many products provide manual

screen identification that requires

developers to navigate to each

desired screen in the live

application and manually select

the characteristics that make

that screen unique. If the

developer accidentally selects a

conditional field, or uses the

same characteristics to identify two different

screens, identification can fail. If a screen

changes, the developer must manually

navigate to the screen again and re-identify it.

More advanced modernization solutions

automatically maintain screen identifications.

Screen maps are incorporated into a

repository, and are automatically assigned

unique identifiers. Since this process is

based on the screen maps, rather than the

live data stream, it’s more accurate. The

links between GUIs and the green screens in

the repository are automatically checked

and updated whenever the

change-management process is initiated.

Automated screen identification ensures an

accurate link between your GUI and your

host applications—without requiring the

developer to spend any time maintaining

these critical links.

considered until

after a solution is

identified. This can

be a costly

mistake. With

these tactical

approaches,

developers

operate in the

dark. When

building a new GUI

front-end solution

based only on live

screens, visibility

into the level of

effort is limited to

the developer’s

knowledge of the live application. You may

be unaware of application features that only

display in certain circumstances, or of

An effective modernization solution gives you visibility into your project.

modifications that only apply to certain

customers or business units. Your visibility

into maintenance costs is also limited.

However, if you’re using a modernization

solution that provides you with complete

information about all the screens that are

part of your project, you’ll be able to clearly

understand, estimate, and document the

amount of work required to complete a

modernization project. If you are considering

a screen-based web enablement project,

you will have applications in mind that you

want to convert. How many screens are in

those applications? If you don’t know how

many screens require GUIs, how can you

estimate the time and effort it will take to

complete the project? How will you even

know when the project is complete?

A complete modernization solution should

use a screen repository to let you quantify

the work required to complete a project, and

offer tools that let you ascertain the exact

number of screens in any application or

module, as well as the complexity of each

screen. A project estimator feature should

also enable you to assign time-to-complete

values for screens of varying complexity, and

document the level of effort down to

individual screens and fields, to successfully

implement your new user experience.

13

Rocket®

TOP 5 MYTHS OF GREEN-
SCREEN MODERNIZATION

Some tools are used to quickly complete a

UI project at the last minute. Because of this

perception, project management is often not

What screen am I on?
Custom GUIs for green-screen

applications require a link

between the GUI and the host

screens that provide information.

In other words, the GUI solution

must “know” what screens are

being sent by the host to show

the right GUIs.

Many products provide manual

screen identification that requires

developers to navigate to each

desired screen in the live

application and manually select

the characteristics that make

that screen unique. If the

developer accidentally selects a

conditional field, or uses the

same characteristics to identify two different

screens, identification can fail. If a screen

changes, the developer must manually

navigate to the screen again and re-identify it.

More advanced modernization solutions

automatically maintain screen identifications.

Screen maps are incorporated into a

repository, and are automatically assigned

unique identifiers. Since this process is

based on the screen maps, rather than the

live data stream, it’s more accurate. The

links between GUIs and the green screens in

the repository are automatically checked

and updated whenever the

change-management process is initiated.

Automated screen identification ensures an

accurate link between your GUI and your

host applications—without requiring the

developer to spend any time maintaining

these critical links.

considered until

after a solution is

identified. This can

be a costly

mistake. With

these tactical

approaches,

developers

operate in the

dark. When

building a new GUI

front-end solution

based only on live

screens, visibility

into the level of

effort is limited to

the developer’s

knowledge of the live application. You may

be unaware of application features that only

display in certain circumstances, or of

modifications that only apply to certain

customers or business units. Your visibility

into maintenance costs is also limited.

However, if you’re using a modernization

solution that provides you with complete

information about all the screens that are

part of your project, you’ll be able to clearly

understand, estimate, and document the

amount of work required to complete a

modernization project. If you are considering

a screen-based web enablement project,

you will have applications in mind that you

want to convert. How many screens are in

those applications? If you don’t know how

many screens require GUIs, how can you

estimate the time and effort it will take to

complete the project? How will you even

know when the project is complete?

A complete modernization solution should

use a screen repository to let you quantify

the work required to complete a project, and

offer tools that let you ascertain the exact

number of screens in any application or

module, as well as the complexity of each

screen. A project estimator feature should

also enable you to assign time-to-complete

values for screens of varying complexity, and

document the level of effort down to

individual screens and fields, to successfully

implement your new user experience.

14

Rocket®

TOP 5 MYTHS OF GREEN-
SCREEN MODERNIZATIONMyth #5: You Can’t Use APIs

with Modernization Solutions

Some modernization solutions offer the

ability to turn business processes within

existing enterprise applications into discrete

APIs. For example, an API might take an

existing application function, such as “look

up a customer address” or “add an item to

an order,” and encapsulate it into a RESTful

service. The service is then made available

to other applications within or outside the

organization. When other applications need

information from the host application, they

call the required API and receive a reply

through web services. The underlying host

application remains unchanged.

While this is a different type of modernization

for an existing application, all the challenges

that apply to creating a new GUI also apply

to creating new services. Traditional

approaches still don’t address the

fundamental challenges: automating service

mapping to the right screens and fields,

synchronizing host changes with the

services that rely on these screens and

fields, and being able to accurately estimate

the level of effort required to create and

maintain services. Speed is another issue.

Can traditional approaches meet

service-level requirements? This is a valid

concern for poorly architected solutions.

To work in high-volume environments that

require frequent changes to business logic,

a service-enablement solution must be

capable of busting all the myths presented

in this eBook. It should also execute

services independently of any GUI

modernization layer, to ensure maximum

Myth

15

Rocket®

TOP 5 MYTHS OF GREEN-
SCREEN MODERNIZATION

If you need a modernization solution, but are

wary of development hurdles or the quality of

the result, Rocket® LegaSuite software will

change your outlook. Rocket LegaSuite and

Rocket® API offer a complete web- and

API-enablement solution to modernize your

existing text-based application portfolio.

If you’re planning a web- or service-

enablement project for an existing

host-based application—whether it’s based

on a mainframe, IBM i, OpenVMS, or

UNIX-VT platform—consider the advantages

of Rocket solutions:

• Synchronized development and
maintenance for screens and their
corresponding GUIs and services

• Automated screen identification and
management

• Accurate host-to-GUI and
host-to-service field mapping based
on true field names rather than
row/column positioning

• Detailed project planning and
management capabilities

• Comprehensive support for IBM® i and
heterogeneous application lifecycle
management through Rocket® Aldon
Lifecycle Manager

Painless Screen-Based
Modernization and Integration

16

Rocket®

TOP 5 MYTHS OF GREEN-
SCREEN MODERNIZATIONRocket Modernization Solutions

Whether you’ve used another solution in the past or are just beginning to explore the

possibilities of web- and service-enablement for your existing applications, we invite you to

experience the alternatives offered by Rocket Software:

• Rocket LegaSuite enables you to web-enable critical back-end applications and access
them from web and mobile browsers. It makes web development fast and easy, with
drag-and-drop tools and runtime components that extend and repurpose any
host-based application as a user-friendly, HTML5 web application.

• Rocket API enables you to unlock the value of your green-screen application logic for
access from virtually any web or mobile application, so you can ensure outstanding user
experiences that mirror the way that your stakeholders do business. Using Rocket
Rocket API, you wrap functionality within existing critical business systems in APIs that
can be integrated with new or existing cloud, mobile, and self-service
applications—without any risky code changes to your existing systems.

17

Rocket®

TOP 5 MYTHS OF GREEN-
SCREEN MODERNIZATION

Here’s how to determine which Rocket solution best suits your needs:

Create a modern web or mobile interface for host-based

applications on the IBM i, mainframe, OpenVMS, or UNIX-VT

platforms, optionally including third-party APIs

Create a new web or mobile application that draws

functionality from multiple host-based applications

Access functionality from host-based applications for use with

external web, mobile, or other applications

To find out more about Rocket LegaSuite and Rocket API, please contact us today for a

no-obligation, personal demonstration.

Rocket LegaSuite

Rocket API and

Rocket LegaSuite

Rocket API

What You’re Trying to Do Rocket Solution(s)

Rocket®
© Rocket Software, Inc. or its affiliates 1990 – 2017. All rights reserved. Rocket and the Rocket Software logos are registered trademarks of Rocket Software, Inc. Other
product and service names might be trademarks of Rocket Software or its affiliates. 201709EBFMOGSMV2

rocketsoftware.com

info@rocketsoftware.com

US: 1 855 577 4323 EMEA:
0800 520 0439 APAC: 612
9412 5400

twitter.com/rocket

www.linkedin.com/
company/rocket-software

www.facebook.com/
RocketSoftwareInc
blog.rocketsoftware.com

EBOOKEBOOK

Rocket Software (www.rocketsoftware.com) is a technology company that helps organizations in the IBM
ecosystem build solutions that meet today's needs while extending the value of their technology investments
for the future. Thousands of companies depend on Rocket to solve their most challenging business
problems by helping them run their existing infrastructure and data, as well as extend those assets to take
advantage of cloud, mobile, analytics, and other future innovations. Founded in 1990, Rocket is based in
Waltham, Massachusetts with locations in Europe, Asia, and Australia.

