

 Top Five Myths of Screen Scraping

The Evolution of Application Modernization Technology

 A WHITE PAPER FROM

 www.rocketsoftware.com/seagull

Top Five Myths of Screen-Scraping 2

© 2010 Rocket Software, Inc. All rights reserved.

Imagine for a moment it’s your first day at a new job. You’re working for a company that
relies on timely and accurate access to customer information. Perhaps you are a claims
processor at an insurance company, a customer service rep at a bank, or a sales manager at a
car dealership. One of the first tasks your supervisor gives you is to spend your first three
weeks on the job learning a business-critical computer application that looks like it’s from
1975. How would that make you feel?

Surprisingly, many organizations still ask their employees to use green-screen (or text-based)
user interfaces to work with essential business information. If your organization uses or sells
mainframe, System i or OpenVMS applications, you’re familiar with this scenario. And if you
manage employees who use these applications, you recognize the problem green-screens
present. They’re unappealing, hard to learn, intimidating, and accessible only with terminal
emulation software. They’re also incompatible with modern application integration standards
like Web services and SOA.

Green-screens are a business problem and a technology problem. How can businesses stay
competitive when it requires weeks to train employees on green-screen applications? How can
a group of customer service reps help a customer on the phone when it takes several minutes
to find basic customer data? How can a business share select pieces of critical data with
employees, partners, and other applications without giving users a complicated way of getting
to the data?

The technology side of the problem is simply that green-screen applications are no longer the
de facto standard for user interfaces. Host-based applications run businesses. They’re still
around today because they’re reliable, secure and have decades of business rules and
information housed in them. Application developers need a way to help the business use the
same information from the legacy system but deliver it in a modern and flexible way.

Getting Past the Myths

For several years there have been ways of turning green-screen applications into more up-to-
date and useful Web-based applications or services. This approach is commonly referred to as
screen scraping.

Screen scraping has negative connotations to it — some consider it a quick fix and a clumsy way
to develop applications or services. But this attitude is out of step with today’s application
modernization technology. With the right combination of features, a screen-scraping tool can
be an application modernization solution that solves the business and technology problems that
green-screens present.

This purpose of this white paper is to outline the most common screen-scraping myths that
proliferate today and show how current modernization technology challenges those myths.

Top Five Myths of Screen-Scraping 3

© 2010 Rocket Software, Inc. All rights reserved.

Myth #1: Screen Scraping is Only a Green-Screen in a Browser
A basic requirement for green-screen-based modernization is the ability to dynamically display
a GUI version of any application screen. This typically involves setting up generic templates or
rules that interpret each screen on the fly and present a GUI version of the screen to the user.
Dynamic GUI is useful for deploying applications to desktops or the Web, but adds little
functional value from the user or business perspective. It is sometimes referred to as “green-
screen in a browser.”

The real value-add in screen-based modernization
projects lies in the ability to customize the application
user interface. Users need improved application usability
and workflow and integration with the desktop- and Web-
based tools they require to do their jobs. The basis for a
customized GUI is still screens; however, the screens
behave more as application-level APIs than direct user

interfaces.

Traditional screen-scraping approaches focus on “green
screen in a browser.” Current modernization technology focuses on re-engineering the
application at the user interface level, combining information from multiple green-screens and
presenting it to the user when and where it is required to perform whatever business processes
they are engaged in.

Myth #2: Keeping Host and GUI in Sync is Hard
As any developer knows, maintaining APIs can be a labor-intensive process. If an API changes,
anything that uses that API must typically also be adapted. So if a green screen changes, how
do you take that change into account in your GUI?

Managing host application change is a key differentiator between current modernization
technologies and a typical screen-scraping approach. An effective modernization solution uses
your actual application screen maps1 during application development and maintenance. With a
repository of screen maps as a basis for development, developers can create and maintain
customized GUIs for applications that include thousands of screens. When screens change, an
automated change management feature enables you to easily synchronize your GUI application
with your underlying screen “APIs.”

Host-to-GUI synchronization is actually a two-part challenge:

• The GUI must know what screen(s) to use to access information

• The GUI must know what host fields to use on each screen

1 Mainframe applications typically use screen map types like BMS and MFS. System i applications typically
use display files (DSPF).

Customized interfaces give users the
same host information with much
improved functionality.

Top Five Myths of Screen-Scraping 4

© 2010 Rocket Software, Inc. All rights reserved.

Traditional screen-scraping approaches expect you to manually maintain the links between
your live green screens and your GUI. If a screen changes, there is no automated way to catch
and apply the change. By registering your application screen map files in an XML-based
repository, today’s modernization tool overcomes the synchronization challenge and provides a
complete foundation for application development and maintenance.

What screen am I on?

Custom GUIs for green-screen applications require a link between the GUI and the host screens
that provide information. In other words, the GUI solution must “know” what screens are being
sent by the host in order to show the right GUIs.

A stereotypical screen-scraping product provides manual screen identification. In manual
identification, the developer must navigate to each desired screen in the live application and

manually select the characteristics about that screen that make
it unique from all other screens in the application. If the
developer accidentally selects a conditional field or uses the
same characteristics to identify two different screens,
identification can fail. If a screen changes, the developer must
manually navigate to the screen again and re-identify it.

With a more advanced modernization tool, maintaining screen
identifications is an automated process. Screen maps are

incorporated into a repository and are automatically assigned
unique identifiers. Since this process is based on the screen maps
rather than the live datastream, it’s more accurate. The links
between GUIs and the green-screens in the repository are

automatically checked and updated whenever the change management process is initiated.

Automated screen identification insures an accurate link between your GUI and your host
applications – without requiring a developer to spend any
time maintaining these critical links.

What fields do I need?

As users work with your GUI, information they enter or
change is pushed back to editable fields on the green screen.
Therefore, GUIs built over green-screen applications require
a link between the host fields on each screen that provide
the information and GUI fields that enable users to interact
with that information.

A typical screen-scraping approach to this challenge is to rely
on the developer to create manual mappings based on the
row/column position of each host field on each screen.
Developers navigate live to each screen that contains the fields they want, then point and click
on each individual field to register it for use in the GUI. Solution developers may not know that
certain fields change color, size, or position based on program events and therefore cannot

As shown in this repository,
being able to keep track of
screens is a key difference
between screen-scraping and
modernizing.

Rather than using row/column
positions, an effective Web-
enablement tool should offer
automatic host field mapping.

Top Five Myths of Screen-Scraping 5

© 2010 Rocket Software, Inc. All rights reserved.

take these changes into account. They may be unaware of conditional fields that only display in
certain circumstances. Without access to the screen maps, these solutions place the burden on
the developer to discover changes in field states and attributes.

A more precise method is necessary. An effective modernization tool offers automatic host
field mapping based on the application field names and attributes from the screen maps.
Information about every host field in the application becomes available via the screen
repository. By providing access to this information, the solution enables developers to create
solutions that encompass all of the host application possibilities — including features like
detecting and acting upon color and state changes and variable field positions and sizes.

Using the true application field names also reduces change management requirements, as the
modernization solution interacts with fields based upon their true host names rather than their
row and column positions on the screen. If you move a field on the screen, a modern solution
can still interact with it without changing the underlying field definition.

Myth #3: Screen-Scraping is a Maintenance Nightmare
One of the most pervasive screen-scraping myths is that it causes a maintenance nightmare.
This myth is well-earned, because in traditional screen scraping solutions maintenance is a
challenge. Because these solutions scrape live screens for development, they offer no
automated way to accommodate for, or even be aware of, host application changes. This shifts
the maintenance burden to the developer, who is expected to identify and react to these
changes. This reactive approach often means that maintenance is not initiated until after users
have already found a problem.

As already stated, a modernization tool should feature change management technology
designed to keep application screens and corresponding GUIs synchronized. This point is
critical. Accurate change management reduces your application maintenance burden and
elevates the quality and reliability of your modernized solution.

When a solution uses a screen repository to manage host-to-GUI screen changes, ongoing
maintenance becomes a highly automated process. Developers can proactively schedule
synchronization with the host application screens at any time. The synchronization process
updates the screen repository with the latest screen maps, makes corresponding updates to
screen identifications, host field information, and the GUI, and produces a complete report of
all activities. These processes can all run unattended (in batch mode), or they can be
performed step-by-step by individual developers. Work is typically limited to adjusting the
layout of the customized GUI to accommodate added fields on the host and customizing GUIs
for new host screens. Working files can also be managed via common source control tools like
CVS or Subversion.

Myth #4: Screen-Scraping Projects Are Unmanageable
Screen scraping is often seen as a quick fix to complete a project at the last minute. Because
of this perception, project management is often not taken into account until after a solution is
identified. This can be a costly mistake. With the traditional screen-scraping approach,
developers operate in the dark. When building a new GUI front-end solution based only on live

Top Five Myths of Screen-Scraping 6

© 2010 Rocket Software, Inc. All rights reserved.

screens, the visibility into the level of effort is limited to the developer’s knowledge of the live
application. You may be unaware of application features that only display in certain
circumstances, or of modifications that only apply to certain customers or business units. Your
visibility into maintenance costs is also limited.

However, if you’re using a modernization solution that provides you with complete information
about all of the screens that are part of your project, you’ll be able to clearly understand,

estimate, and document the amount of work required to complete a
modernization project. If you are considering a screen-based Web
enablement project, you certainly have applications in mind that
you want to convert. How many screens are in those applications? If
you don’t know how many screens there are to create GUIs for, how
can you estimate the time and effort it will take to complete the
project? How do you even know when the project is complete?

By using a screen repository, a current modernization solution lets
you quantify the work required to complete a project. Tools should

exist in the solution that let you ascertain the exact number of
screens in any application or module, as well as the complexity of
each screen. A project estimator feature enables you to assign time-

to-complete values for screens of varying complexity and document the level of effort, down to
individual screens and fields, to successfully implement your GUI interface.

Myth #5: You Can’t do SOA with Screen-Scraping
Thus far this paper has focused on new graphical user interfaces for existing green-screen
applications. Some screen-scraping solutions also offer the ability to service-enable existing
applications. Service enablement means taking an existing application function, like “look up a
customer address” or “add an item to an order,” and encapsulating it into a callable service
(typically a web service). The service is then made available to other applications as part of a
larger service-oriented architecture (SOA) project. When other applications need information
from the host application, they call the required application functions and receive a reply via
web services. The underlying host application remains unchanged.

While this is a different type of modernization for an existing application, all of the challenges
that apply to creating a new GUI also apply to creating new services. Traditional screen
scraping approaches still don’t address the fundamental challenges — automating service
mapping to the right screens and fields, synchronizing host changes with the services that rely
on these screens and fields, and being able to accurately estimate the level of effort required
to create and maintain services. Screen-scraping is also traditionally thought to be too slow to
meet the service level expectations of a modern SOA. This is typically because traditional
service-enablement functionality is bolted on to an existing screen scraper-based GUI
enablement solution rather than executed separately.

In order for a service enablement solution to work in high-volume environments that require
frequent changes to business logic, it must be capable of busting all of the myths presented in

An effective modernization
solution gives you
visibility into your project.

Top Five Myths of Screen-Scraping 7

© 2010 Rocket Software, Inc. All rights reserved.

this white paper. It also should execute services independently of any GUI modernization layer
to insure maximum performance.

LegaSuite: Painless Screen-Based Modernization and Integration
If you’re looking for screen-scraping solution but are wary of the development hurdles or the
quality of the result, LegaSuite will change your outlook. LegaSuite goes beyond screen-
scraping to offer a complete Web- and service-enablement solution that can modernize your
existing text-based application portfolio.

If you’re planning a Web- or service-enablement project for an existing host-based application
— whether it’s based on the mainframe, System i, OpenVMS or UNIX-VT platform – consider the
advantages LegaSuite offers:

• Synchronized development and maintenance for screens and their corresponding GUIs
and services

• Automated screen identification and management
• Accurate host-to-GUI and host-to-service field mapping based on true field names

instead of row/column positioning
• Detailed project planning and management capabilities

Whether you have used another solution in the past or are just beginning to explore the
possibilities of Web- and service-enablement for your existing applications, we invite you to
experience the LegaSuite advantage. Contact us today for a no-obligation, personal
demonstration.

About Rocket Seagull

Since 1990, Rocket Seagull Seagull has specialized in technology that lets organizations quickly and easily

reuse the information and data housed in their legacy systems.

Over 1,800 customers and 350 ISVs use our LegaSuite software platform to connect legacy applications on

mainframe, IBM i (AS/400), OpenVMS, and Windows client/server platforms to the Web, to other middleware

and to newer-generations of applications.

www.rocketsoftware.com/seagull

