
 

 

  

D3 Security – BASIC SSL Functions 

 Lab Guide 

Developed by 
D3 MVU Team 
 

 
 

 
 
 

 



D 3  S e c u r i t y  –  B A S I C  S S L  F u n c t i o n s  L a b  G u i d e  
 

 

MV University 2015              Page 1 

 

©2015 Rocket Software, Inc. All Rights Reserved. 
Lab materials may not be reproduced in whole or in part without prior written permission of Rocket 
Software. 

Lab Overview  

Abstract 

This lab demonstrates the use of the FlashBASIC SSL functions. These 

functions enable your server-side code to protect your data in transmission 
by using encryption. The API for these functions is briefly presented, 
followed by a pair of sample programs that uses all of the functions to 

communicate securely. 
 
 
 

 
 
 

 
 
This lab used a controlled environment at MV University. You can do this 

exercise in your environment if you download a special account – SSL. This can 
be found at our github site:  

https://github.com/RocketSoftware/multivalue-lab 

  



D 3  S e c u r i t y  –  B A S I C  S S L  F u n c t i o n s  L a b  G u i d e  
 

 

MV University 2015              Page 2 

 

©2015 Rocket Software, Inc. All Rights Reserved. 
Lab materials may not be reproduced in whole or in part without prior written permission of Rocket 
Software. 

About the Lab Environment 

The lab environment uses the following:  
 

Desirable Prerequisites: 

 Some BASIC programming skills 

 D3 10.1 Linux, D3 9.2 Windows 

 SSL Account 

Lab Overview  

 Time estimate: 70 minutes 
 There are four sections to this lab: 

 
– Section 1: Overview of the FlashBASIC SSL functions 
– Section 2: Walkthrough the server sample 

– Section 3: Walkthrough the client sample 
– Section 4: Running the sample programs 

 



D 3  S e c u r i t y  –  B A S I C  S S L  F u n c t i o n s  L a b  G u i d e  
 

 

MV University 2015              Page 3 

 

©2015 Rocket Software, Inc. All Rights Reserved. 
Lab materials may not be reproduced in whole or in part without prior written permission of Rocket 
Software. 

Exercise 1: Overview of the FlashBASIC SSL functions 

 

Purpose of the Exercise  
This exercise briefly goes over some of the core FlashBASIC communications 

functions for both non-secure and secure (SSL) communication. 
 

After this exercise you will be able to: 
List the FlashBASIC functions used in secure communication 

Understand how they differ from their non-secure counterparts 

 

Exercise Instructions  
 
Perform the following steps:  

 
__ 1. Functions that are common to both regular and secure 

communication 

%socket() – creates a socket resource and returns a handle to it 

%bind() – binds a socket resource to a port 

%listen() – informs the OS how many concurrent connections to accept 

__ 2. Functions that are used in regular (non-secure) communication 

 Unix and Windows 

o %accept() – accepts connections from a client, and returns the client’s 

IP address, port, and a new handle to communicate using this specific 

connection 

o %connect() – connects to the given server on the given port 

 Unix Only 

o %close() – closes the connection and releases the socket resource. 

For the server, this must be called twice: once for the handle returned 

by %socket() and once for the handle returned by %accept(). 

o %read() – reads data from the connection 

o %write() – writes data to the connection 

For %read() and %write() the client uses the handle returned by 

%socket(), while the server uses the handle returned by %accept(). 



D 3  S e c u r i t y  –  B A S I C  S S L  F u n c t i o n s  L a b  G u i d e  
 

 

MV University 2015              Page 4 

 

©2015 Rocket Software, Inc. All Rights Reserved. 
Lab materials may not be reproduced in whole or in part without prior written permission of Rocket 
Software. 

 Windows Only 

o %closesocket() – closes the connection and releases the socket 

resource. For the server, this must be called twice: once for the handle 

returned by %socket() and once for the handle returned by 

%accept(). 

o %recv() – reads data from the connection 

o %send() – writes data to the connection 

For %recv() and %send() the client uses the handle returned by 

%socket(), while the server uses the handle returned by %accept(). 

__ 3. Functions that are used in secure (SSL) communication 

Both Unix and Windows use the same functions 

 %accept_ssl() – accepts connections from a client, and returns the client’s IP 

address, port, and a new handle to communicate using this specific connection. 

Unlike its non-secure counterpart, it also requires the names of the certificate 

and private key files to load from the host OS. 

 %connect_ssl() – connects to the given server on the given port. Unlike its 

non-secure counterpart, it returns a new handle to communicate using the 

specific connection. 

 %read_ssl() - reads data from the connection 

 %write_ssl() – writes data to the connection 

 %close_ssl() – closes the connection. Unlike its non-secure counterpart, it 

takes two parameters: the handle returned by %socket() and either the handle 

returned by %accept_ssl() (server) or %connect_ssl() (client). 

 

Exercise 1 summary: Familiarity with the FlashBASIC secure communications functions and how 

they differ from their non-secure counterparts. 

 

End of Exercise 1 

  



D 3  S e c u r i t y  –  B A S I C  S S L  F u n c t i o n s  L a b  G u i d e  
 

 

MV University 2015              Page 5 

 

©2015 Rocket Software, Inc. All Rights Reserved. 
Lab materials may not be reproduced in whole or in part without prior written permission of Rocket 
Software. 

Exercise 2: Walkthrough the server sample 

 

Purpose of the Exercise  
This exercise walks through the FlashBASIC server sample program that uses 

the secure (SSL) communication functions. 
 

After this exercise you will: 
Become familiar with the server sample program 

Understand how to use the FlashBASIC secure communication functions 

 

Exercise Instructions 
 
Perform the following steps: 

 
__ 1. Log in to D3. 

a. Do one of the following: 

 On Linux, from the shell, enter d3. 

 On Windows, Telnet to localhost. 

b. Respond to the prompts as shown below: 

user id: dm 

master dictionary: SSL 

__ 2. Review the SSL,bp, sslserver program. 

There are multiple methods to review. For example: 

 ed SSL,bp, sslserver, or 

 u SSL,bp, sslserver, or 

 ct SSL,bp, sslserver 

Each section is described in its own step below. 

In summary, the sslserver program asks the user if IPv4 or IPV6 is being used and 

the port number on which to communicate. It then listens for a connection from 

the client. Once a connection has been accepted, it behaves as a synchronous chat 

program, alternating between reading (listening), prompting the user for a 

message, and writing (talking) with the sslclient program. 

The sslclient walkthrough exercise is very similar to this exercise. Therefore, some 

of the verbosity present in this walkthrough is eliminated from the sslclient 



D 3  S e c u r i t y  –  B A S I C  S S L  F u n c t i o n s  L a b  G u i d e  
 

 

MV University 2015              Page 6 

 

©2015 Rocket Software, Inc. All Rights Reserved. 
Lab materials may not be reproduced in whole or in part without prior written permission of Rocket 
Software. 

walkthrough. Translation: focus your attention on this exercise and refer back to it 

as needed. 

__ 3. cfunction, includes, and program inputs. 

Notice the cfucntion and include statements at the start of the program: 

cfunction socket.builtin 

include dm,bp,includes sysid.inc 

include dm,bp,unix.h socket.h 

The cfunction statement allows the program to recognize the communication 

related FlashBASIC %functions. 

The include statements provide the necessary platform specific constants used 

when working with the FlashBASIC %functions. 

The program then gathers the inputs required to listen for a client. 

__ 4. Create a socket. 

socketfd = %socket( addressFamily, SOCK$STREAM, 0 ) 

The %socket() function is used to create a socket structure. This allocates memory 

that is used to maintain both programmer provided configuration settings and 

internal settings. 

The parameters instruct it to use the user specified IPv4 or IPv6 addressing, to 

communicate using streaming, and to let the system determine the best protocol. 

It returns a handle to the socket structure. Hang on to this. It is needed by other 

communication functions and also to close/free the memory when done. 

__ 5. Bind the socket to a local port. 

rtn = %bind( socketfd, addressFamily, INADDR$ANY, serverPort+0 ) 

The %bind() function is used to bind the socket resource to a port. 

Among other things, the parameters include the handle to the socket returned by 

the %socket() call and the port. 

Attention! 

 Notice that the port parameter is passed to the function as follows: 

serverPort+0 



D 3  S e c u r i t y  –  B A S I C  S S L  F u n c t i o n s  L a b  G u i d e  
 

 

MV University 2015              Page 7 

 

©2015 Rocket Software, Inc. All Rights Reserved. 
Lab materials may not be reproduced in whole or in part without prior written permission of Rocket 
Software. 

 Internally, the %functions are implemented using C and C++, both of which 

are strongly typed languages. BASIC is not as strongly typed and typically 

needs to be coerced to pass the parameter as the correct type. 

 In this case, serverPort was collected using the BASIC input statement, 

which stores the value as a string. The +0 coerces BASIC into using the 

value as a number, which is what is required by %bind(). 

 This is not specific to %bind() or even the communication functions. Be 

mindful of this when dealing with any FlashBASIC %functions. 

 As a side exercise, try the following from TCL: 

search dm,bp, 

 When prompted, type the following and press <Enter> twice. 

+0 

 Notice that the +0 in conjunction with %functions appears often. 

__ 6. Wait for an incoming connection 

rtn = %listen( socketfd, 1 ) 

The %listen() function tells the OS the maximum number of concurrent 

connections it can accept on this port. In this example, only one will be allowed. 

__ 7. Accept a connection 

char clientAddress[ 46 ] ;* IPv6 requires a char array. 

rtn = %accept_ssl( socketfd, clientAddress, &clientPort, "mvu2015-

certificate.pem", "mvu2015-privatekey.pem", &sslfd ) 

The %accept_ssl() function accepts an incoming SSL connection from a client. 

The handle to the socket structure returned by the %socket() function is passed 

as a parameter. 

Notice how the clientAddress parameter for IPv6 is prepared. A char array is 

allocated. This differs from IPv4, which allocates an integer and passes it with the 

+0. This is the only API difference between the IPv4 and IPv6 %accept_ssl() 

functions. The clientAddress is an output parameter. If a connection is 

successfully accepted, it will contain the IP address of the client. 

The clientPort is also an integer output parameter, and upon a successful 

connection, will contain the port on which the client is listening to responses from 

the server. 



D 3  S e c u r i t y  –  B A S I C  S S L  F u n c t i o n s  L a b  G u i d e  
 

 

MV University 2015              Page 8 

 

©2015 Rocket Software, Inc. All Rights Reserved. 
Lab materials may not be reproduced in whole or in part without prior written permission of Rocket 
Software. 

Attention! 

 Notice how the an integer output parameter is passed: 

&clientPort 

 This tells BASIC to pass the address of the clientPort variable to the 

%function, not the value it contains. Having access to the address allows 

the %function to set the value of the variable. That is, it allows the variable 

to be an output parameter that is populated by the call. 

The %accept_ssl() function also takes the names of two files containing the 

certificate and private key necessary for encrypted communication. There is a 

wealth of information about public key cryptography, certificates, keys, etc. A few 

very brief highlights are listed here in regards to how they were used in this 

example program. 

 PEM files can contain one or more entries. For example, a single PEM file 

may contain both the certificate and private key. Then the same file name 

may be given for both certificate and private key file name parameters. 

 The openssl utility was used to generate both the certificate and private 

key used in this lab. The following command was used. 

openssl req -x509 -newkey rsa:2048 -keyout mvu2015-

privatekey.pem -out mvu2015-certificate.pem -days 60 -nodes 

Finally, the %accept_ssl() function takes sslfd, which is an integer output 

parameter. On success, sslfd is a handle. Hang on to this. It is needed by other 

communication functions and also to close/free the memory when done. 

__ 8. Use this new fd to communicate with the client. 

This part of the program displays the client’s IP address and port. 

It then goes into a loop reading from and writing to the client. 

__ 9. Read data from the socket. 

char readBuffer[ 10000 ] 

byteCount = %read_ssl( sslfd, readBuffer, 10000 ) 

This function reads data from the client. The programmer passes in the sslfd 

returned by %accept_ssl(), a char array output buffer that will be populated by 

the data read, and the maximum size of the buffer. 

It returns the number of bytes read and displays the data. 



D 3  S e c u r i t y  –  B A S I C  S S L  F u n c t i o n s  L a b  G u i d e  
 

 

MV University 2015              Page 9 

 

©2015 Rocket Software, Inc. All Rights Reserved. 
Lab materials may not be reproduced in whole or in part without prior written permission of Rocket 
Software. 

print "From Client: " : readBuffer[ 1, byteCount ] 

Attention! Notice how the text is extracted. This is necessary so that anything 

beyond the end of the actual string is eliminated. 

__ 10. Ask for data to send. 

This simply prompts the user for input to send to the client. 

__ 11. Write data to socket. 

byteCount = %write_ssl( sslfd, writeBuffer, len( writeBuffer )+0 ) 

This function writes data to the client. The programmer passes in the sslfd 

returned by %accept_ssl(), the buffer containing the user’s input, and the length 

of the buffer. Notice the +0, which coerces the result of len() into an integer. 

__ 12. Close socket. 

rtn = %close_ssl( socketfd, sslfd ) 

This function wraps up the secure communication and releases the resources 

associated with the socketfd and sslfd handles. 

Unlike its non-secure counterpart, which requires the handles returned by 

%socket() and %accept() to be closed separately, %close_ssl() closes both 

handles with a single call. 

 

Exercise 2 summary: Familiarity with the sslserver sample program and how to use the secure 

communication functions. 

 

End of Exercise 2 

  



D 3  S e c u r i t y  –  B A S I C  S S L  F u n c t i o n s  L a b  G u i d e  
 

 

MV University 2015              Page 10 

 

©2015 Rocket Software, Inc. All Rights Reserved. 
Lab materials may not be reproduced in whole or in part without prior written permission of Rocket 
Software. 

Exercise 3: Walkthrough the client sample 

 

Purpose of the Exercise  
This exercise walks through the FlashBASIC client sample program that uses 

the secure (SSL) communication functions. 
 

After this exercise you will: 
Become familiar with the client sample program 

Understand how to use the FlashBASIC secure communication functions 

 

Exercise Instructions 
 
Perform the following steps: 

 
__ 1. Log in to D3 

a. Do one of the following: 

 On Linux, from the shell, enter d3. 

 On Windows, Telnet to localhost. 

b. Respond to the prompts as shown below: 

user id: dm 

master dictionary: FLE 

__ 2. Review the SSL,bp, sslclient program. 

There are multiple methods to review. For example: 

 ed SSL,bp, sslclient, or 

 u SSL,bp, sslclient, or 

 ct SSL,bp, sslclient 

Each section is described in its own step below. 

In summary, the sslclient program asks the user if IPv4 or IPV6 is being used, the 

host to which to connect, and the port number on which the server is listening. It 

then connects to the server. Once the connection has been accepted, it behaves as 

a synchronous chat program, alternating between prompting the user for a 

message, writing (talking), and reading (listening) with the sslserver program. 

Much of this is duplicated from the previous exercise discussing the sslserver 

program. 



D 3  S e c u r i t y  –  B A S I C  S S L  F u n c t i o n s  L a b  G u i d e  
 

 

MV University 2015              Page 11 

 

©2015 Rocket Software, Inc. All Rights Reserved. 
Lab materials may not be reproduced in whole or in part without prior written permission of Rocket 
Software. 

The core difference between the server and client is that the sslserver %bind(), 

%listen(), and %accept_ssl() calls are replaced with the %connect_ssl() call. 

__ 3. cfunction, includes, and program inputs. 

Notice the cfucntion and include statements at the start of the program: 

cfunction socket.builtin 

include dm,bp,includes sysid.inc 

include dm,bp,unix.h socket.h 

The cfunction statement allows the program to recognize the communication 

related FlashBASIC %functions. 

The include statements provide the necessary platform specific constants used 

when working with the FlashBASIC %functions. 

The program then gathers the inputs required to connect to a server. 

__ 4. Create a socket 

socketfd = %socket( addressFamily, SOCK$STREAM, 0 ) 

The %socket() function is used to create a socket structure. This allocates memory 

that is used to maintain both programmer provide configuration settings and 

internal settings. 

The parameters instruct it to use the user specified IPv4 or IPv6 addressing, to 

communicate using streaming, and to let the system determine the best protocol. 

It returns a handle to the socket structure. Hang on to this. It is needed by other 

communication functions and also to close/free the memory when done. 

__ 5. Connect to the server 

rtn = %connect_ssl( socketfd, addressFamily, hostname, port+0, &sslfd 

) 

The %connect_ssl() function opens a connection to the server. 

Among other things, the parameters include the handle to the socket returned by 

the %socket() call, the hostname, and the port. 

Notice the +0 on the port parameter to coerce the variable into an integer. See the 

sslserver walkthrough exercise for a more detailed explanation on this. 



D 3  S e c u r i t y  –  B A S I C  S S L  F u n c t i o n s  L a b  G u i d e  
 

 

MV University 2015              Page 12 

 

©2015 Rocket Software, Inc. All Rights Reserved. 
Lab materials may not be reproduced in whole or in part without prior written permission of Rocket 
Software. 

The %connect_ssl() function takes sslfd, which is an integer output parameter. 

On success, sslfd is a handle. Hang on to this. It is needed by other communication 

functions and also to close/free the memory when done. 

__ 6. Ask for data to send 

This simply prompts the user for input to send to the server. 

__ 7. Write data to socket 

byteCount = %write_ssl( sslfd, writeBuffer, len( writeBuffer )+0 ) 

This function writes data to the server. The programmer passes in the sslfd returned 

by %connect_ssl(), the buffer containing the user’s input, and the length of the 

buffer. Notice the +0, which coerces the result of len() into an integer. 

__ 8. Read data from the socket 

char readBuffer[ 10000 ] 

byteCount = %read_ssl( sslfd, readBuffer, 10000 ) 

This function reads data from the client. The programmer passes in the sslfd 

returned by %connect_ssl(), a char array output buffer that will be populated by 

the data read, and the maximum size of the buffer. 

It returns the number of bytes read and displays the data. 

print "From Server: " : readBuffer[ 1, byteCount ] 

Attention! Notice how the text is extracted. This is necessary so that anything 

beyond the end of the actual string is eliminated. 

__ 9. Close socket 

rtn = %close_ssl( socketfd, sslfd ) 

This function wraps up the secure communication and releases the resources 

associated with the socketfd and sslfd handles. 

Unlike its non-secure counterpart, which requires the handles returned by 

%socket() and %accept() to be closed separately, %close_ssl() closes both 

handles with a single call. 

 

Exercise 3 summary: Familiarity with the sslclient sample program and how to use the secure 

communication functions. 

 

End of Exercise 3 



D 3  S e c u r i t y  –  B A S I C  S S L  F u n c t i o n s  L a b  G u i d e  
 

 

MV University 2015              Page 13 

 

©2015 Rocket Software, Inc. All Rights Reserved. 
Lab materials may not be reproduced in whole or in part without prior written permission of Rocket 
Software. 

  



D 3  S e c u r i t y  –  B A S I C  S S L  F u n c t i o n s  L a b  G u i d e  
 

 

MV University 2015              Page 14 

 

©2015 Rocket Software, Inc. All Rights Reserved. 
Lab materials may not be reproduced in whole or in part without prior written permission of Rocket 
Software. 

Exercise 4: Running the sample programs 

 

Purpose of the Exercise  
This exercise demonstrates how to run the sslserver and sslclient example 

programs. 
 

After this exercise you will: 
 Become familiar with how to run the sample programs 

 

Exercise Instructions 
 
Perform the following steps: 
 

__ 1. Notes: 

 While running these programs, pressing <Enter> at any prompt without input 

will exit the program. 

 This example demonstrates both the client and the server running on the same 

machine. You may run them on different machines, if you’d like. Simply make 

sure you can ping each machine from the other. 

__ 2. Log in to D3. 

a. Do one of the following: 

 On Linux, from the shell, enter d3. 

 On Windows, Telnet to localhost. 

b. Respond to the prompts as shown below: 

user id: dm 

master dictionary: SSL 

__ 3. Log in to D3, again. 

a. Do one of the following: 

 On Linux, from the shell, enter d3. 

 On Windows, Telnet to localhost. 

b. Respond to the prompts as shown below: 

user id: dm 

master dictionary: SSL 

 



D 3  S e c u r i t y  –  B A S I C  S S L  F u n c t i o n s  L a b  G u i d e  
 

 

MV University 2015              Page 15 

 

©2015 Rocket Software, Inc. All Rights Reserved. 
Lab materials may not be reproduced in whole or in part without prior written permission of Rocket 
Software. 

__ 4. Lookup your IP address 

a. At TCL from the first line lookup the server’s IP address as described below. 

Make note of it. It will be needed when starting the client. 

You may use either the IPv4 or IPv6 address. 

You may also use the hostname, but be sure to ping it to see if an IPv4 or IPv6 

address is returned because the programs need to know which address format 

to use even when specifying a hostname. 

o On Linux: 

!ifconfig 

o On Windows: 

!ipconfig 

__ 5. Start the server 

a. At TCL, from the first line, enter: 

sslserver 

b. Enter either 4 or 6 to select IPv4 or IPv6. 

c. Enter the port number on which to listen. For example, 11122 (full-house, you 

are in Vegas). 

Several messages will be displayed indicating that the server is now waiting for 

a connection from a client. 

__ 6. Start the client 

a. At TCL, from the second line, enter: 

sslclient 

b. Enter either 4 or 6 to select IPv4 or IPv6. This must match what was entered 

for the server. 

c. Enter the hostname or IP address of the server as determined previously. 

d. Enter the port number on which the server is listening. For example, 11122. 

__ 7. Confirm that the client and server connected 

The server will display that the connection was accepted, show the IP address and 

port from the client, and indicate that it is reading from the SSL connection. 

The client will display a message indicating that it is connecting with SSL and then 

prompt for input. 

__ 8. Chat 



D 3  S e c u r i t y  –  B A S I C  S S L  F u n c t i o n s  L a b  G u i d e  
 

 

MV University 2015              Page 16 

 

©2015 Rocket Software, Inc. All Rights Reserved. 
Lab materials may not be reproduced in whole or in part without prior written permission of Rocket 
Software. 

The programs will alternate prompting for input. 

Enter some data to send (enter to quit): 

Enter some text. It will be read and displayed by the other program. 

__ 9. Concluding the program 

a. When done, press <Enter> at the prompt to quit the program. 

The secure connection will be closed and the resources released. 

 

Exercise 4 summary: Running the sample secure communication programs. 

 

End of Exercise 4 


