Tuning U2 Databases on Windows

Nik Kesic, Lead Technical Support
Nik Kesic’s Bio

- Joined uniData in 1995
- ATS (Advanced Technical Support), U2 Common Clients and DB tools
- College degree in Telecommunications
- Provides consultancy, Level 3 support and training
- Published articles on web enablement using RedBack, Sockets, XML, SOAP, SSL and Encryption
- MCP (Microsoft Certified Professional) in networks
Complex Performance Analysis

- **HUMAN**
 - Money
 - Vacation
 - Nice Car
 - Nice Home

- **COMPUTER**
 - CPU Speed
 - Disk criteria
 - Tasks
 - Human Decides
Agenda

- Webinar origins
- Basic Windows architecture
- U2 and Windows interaction
- Windows tuning considerations
- U2 config parameters
- System Performance Tools
- Services Available
- Questions and Answers
Webinar Origins

- Microsoft releasing new products every few years
- Windows becoming more complex
- Customers reporting performance issues on Windows
- Arising need for Virtualization
• OS interacts directly with the hardware
• OS is called system kernel
Basic Windows Architecture

- **Operating system:** Manages the resources of a computer
- **Resources:** CPUs, Memory, I/O devices, Network
- **Kernel:** Memory resident portion of the Windows system
- **File system and process control system:** Two major components of Windows kernel
Basic Windows Architecture

- Major tasks of kernel
 - Process Management
 - Device Management
 - File Management

- Additional services for kernel
 - Virtual Memory
 - System Protection
 - Networking
 - Network File Systems
Process Control Subsystem

- Process synchronization
- Inter-process communication
- Memory management
- Scheduler
 - Process scheduling
 - Allocate CPU to processes
A directory is a collection of files and sub-directories on a disk or tape in standard Windows file system format.

The kernel’s file subsystem regulates data flow between the kernel and secondary storage devices.
Hardware Control

- Hardware control handles interrupts
- Networks, disks or terminal devices may interrupt the CPU
- Kernel resumes interrupted process
Windows API

- **Device Management:** DeviceIoControl, InstallNewDevice, RegisterDeviceNotification, UnregisterDeviceNotification

- **File I/O:** CopyFile, CreateFile, DeleteFile, OpenFile, ReadFile

- **Desktop Windows Mgr:** WM_DWMCOMPOSITIONCHANGED, WM_DWMSENDICONIC THUMBNAIL

- **Others:** GetCursor, Button, DNS_QUERY_COMPLETION_ROUTINE
“U2 products are not like bowls of fruit
They do not go bad over time…
But files can…”
U2 and Windows Interaction

- U2 databases and utilities are a series of ‘C’ and ‘C++’ programs
- U2 uses the NTFS file system for data storage
- U2 processes use the inherent Windows Device I/O Control
- U2 typically uses shared memory segments for:
 - Printer management
 - Program memory management
- U2 can leverage O/S level functionality
 - e.g. SAN Architectures and RAIDs
Larger L2 processor caches provide better performance

Two CPUs are not as fast as one CPU that is twice as fast

A dual core processor is not twice as fast as a single core processor
Amount of Physical Memory (RAM)

- When your computer is running low on memory and more is needed immediately, Windows Servers use hard drive space to simulate system RAM (virtual memory or paging file)
- Try to avoid having a pagefile on the same drive as the operating system files
- Avoid putting a pagefile on a fault-tolerant drive, such as a mirrored volume or a RAID-5 volume
- Don't place multiple pagefiles on different partitions on the same physical disk drive
File Servers cache frequently accessed files in memory; however, files that are not accessed frequently must come from disk.

- Handling large amounts of data with a high number of requests to a high number of files require good disk performance
 - RAID controller connected to a large number of disks

- Make sure the allocation unit size is appropriate for the size of the volume
PagedPoolSize
HKLM\System\CurrentControlSet\Control\SessionManager\MemoryManagement\(REG_DWORD)

- File cache space and paged pool space share a common area in system virtual address
- Limiting the paged pool allows for a larger system cache
 - Causes more content to be cached and allows faster serving of files
PagedPoolSize registry example
DISK I/O: NtfsDisable8dot3NameCreation

- **NtfsDisable8dot3NameCreation**
 HKLM\System\CurrentControlSet\Control\FileSystem\ (REG_DWORD)

 - Default is 0
 - Determines whether NTFS generates a short name
 - Change to 1 to disable short name creation
DISK I/O: Disable last access

- **Disable last access**
 HKLM\System\CurrentControlSet\Control\FileSystem\. (REG_DWORD)

- Not created by default
- Increases speed of access to a folder or file
- Can have significant impact with NTFS, high numbers of folders/files, frequent updates
- After you use this command and restart the computer, the Last Access Time is no longer updated
- For new files, Last Access Time remains the same as the File Creation Time
DISK I/O: NumTcbTablePartitions

- **NumTcbTablePartitions**

 HKLM\system\CurrentControlSet\Services\Tcpip\Parameters\ (REG_DWORD)

 - Not created by default
 - Controls the number of TransportControlBlock (TCB) table partitions
 - *Windows 2003 only; obsolete in Windows 2008*
 - Improves scalability on multiprocessor systems by reducing contention
NTFS File System Setting

HKLM\System\CurrentControlSet\Control\FileSystem\ is **NtfsDisableLastAccessUpdate** (REG_DWORD) 1.

- System-global switch
- Does not exist by default
- Reduces disk I/O load and latencies
- Effective when used with large data sets/number of hosts containing thousands of directories
- Use IIS logging instead for Web administration
- In Windows 2008 this is disabled by default
To check the current status of the TCP/IP parameters which can be tweaked

- **netsh interface tcp show global**

You will be presented with something like the following:

```
Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.
C:\Users\nkesic>netsh interface tcp show global
Querying active state...

TCP Global Parameters
-----------------------------------
Receive-Side Scaling State : enabled
Chimney Offload State : automatic
NetDMA State : enabled
Direct Cache Access (DCA) : disabled
Receive Window Auto-Tuning Level : normal
Add-On Congestion Control Provider : none
ECN Capability : disabled
RFC 1323 Timestamps : disabled

** The above autotuninglevel setting is the result of Windows Scaling heuristics overriding any local/policy configuration on at least one profile.**
```
- Set maximum size of TCP window
 - HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\TcpWindowSize=[wmax]

- Turn on window scaling option
 - HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Tcp1323.opts=1

- TCPTimedWaitDelay
 - HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters
 - Determines the time that must elapse before TCP can release a closed connection and reuse its resources.
Virtualization

- Virtualized Servers provide the foundation for building and managing a virtualized IT infrastructure

- A single physical server can run several virtual machines simultaneously
 - Each of these machines believes it is running on its own dedicated hardware, as if it were separate from all the other machines

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory</td>
<td>1024 MB</td>
</tr>
<tr>
<td>CPUs</td>
<td>1</td>
</tr>
<tr>
<td>CD/DVD Drive 1</td>
<td>[ISO] WIN2003-SP2.iso</td>
</tr>
<tr>
<td>Network Adapter 1</td>
<td>VM Network VLAN20</td>
</tr>
<tr>
<td>SCSI Controller 0</td>
<td>LSI Logic</td>
</tr>
<tr>
<td>Hard Disk 1</td>
<td>Virtual Disk</td>
</tr>
<tr>
<td>Parallel Port 1</td>
<td>[Baal-Local] Icefyre/par.txt</td>
</tr>
<tr>
<td>Hard Disk 2</td>
<td>Virtual Disk</td>
</tr>
<tr>
<td>Floppy Drive 1</td>
<td>Client Device</td>
</tr>
<tr>
<td>Serial Port 1</td>
<td>/dev/ttyS0</td>
</tr>
</tbody>
</table>
UVCONFIG Parameters

- MFILES
- T30FILE
- UVTEMP
- FLTABSZ
- FSEMNUM
- GSEMNUM
- GLTABSZ
- RLTABSZ
- RLOWNER
- MAXRLOCK
- UVTSORT
- TXMEM
- SELBUF
UDTCONFIG Parameters

- GLM_MEM_ALLOC
- NFILES
- SHMMAX
- SHMMIN
- SHM_GNPAGES
- SHM_GPAGESZ
- SHM_MAX_SIZE
- TMP
Connection Pools

Client / Server applications with non-persistent connections can improve performance by adopting U2 Connection Pools
Windows and U2 Performance Tools

- Process Monitor
- Process Explorer
- Windows Performance Monitor
- uvdiag
- udtdiag
Process Monitor

<table>
<thead>
<tr>
<th>Time of Day</th>
<th>Process Name</th>
<th>PID</th>
<th>Operation</th>
<th>Path</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:01:48.561</td>
<td>ProcessMon64</td>
<td>3152</td>
<td>ARP_MU_READ</td>
<td>C:\Windows\System32\uvt32.dll</td>
<td>SUCCESS</td>
</tr>
<tr>
<td>3:01:48.562</td>
<td>ProcessMon64</td>
<td>3152</td>
<td>ARP_MU_READ</td>
<td>C:\Windows\System32\usnrvp32.dll</td>
<td>SUCCESS</td>
</tr>
<tr>
<td>3:01:48.563</td>
<td>ProcessMon64</td>
<td>3152</td>
<td>ARP_MU_READ</td>
<td>C:\Windows\System32\User.dll</td>
<td>SUCCESS</td>
</tr>
<tr>
<td>3:01:48.564</td>
<td>ProcessMon64</td>
<td>3152</td>
<td>ARP_MU_READ</td>
<td>C:\Windows\System32\User.dll</td>
<td>SUCCESS</td>
</tr>
<tr>
<td>3:01:48.565</td>
<td>ProcessMon64</td>
<td>3152</td>
<td>ARP_MU_READ</td>
<td>C:\Windows\System32\User.dll</td>
<td>SUCCESS</td>
</tr>
<tr>
<td>3:01:48.566</td>
<td>ProcessMon64</td>
<td>3152</td>
<td>ARP_MU_READ</td>
<td>C:\Windows\System32\User.dll</td>
<td>SUCCESS</td>
</tr>
<tr>
<td>3:01:48.567</td>
<td>ProcessMon64</td>
<td>3152</td>
<td>ARP_MU_READ</td>
<td>C:\Windows\System32\User.dll</td>
<td>SUCCESS</td>
</tr>
<tr>
<td>3:01:48.568</td>
<td>ProcessMon64</td>
<td>3152</td>
<td>ARP_MU_READ</td>
<td>C:\Windows\System32\User.dll</td>
<td>SUCCESS</td>
</tr>
<tr>
<td>3:01:48.569</td>
<td>ProcessMon64</td>
<td>3152</td>
<td>ARP_MU_READ</td>
<td>C:\Windows\System32\User.dll</td>
<td>SUCCESS</td>
</tr>
<tr>
<td>3:01:48.570</td>
<td>ProcessMon64</td>
<td>3152</td>
<td>RegQueryValue</td>
<td>HKLM\System\CurrentControlSet\Control\WMI\Securiy\Base\Vad3241-1122-2f...</td>
<td>Buffer Overflow</td>
</tr>
<tr>
<td>3:01:48.571</td>
<td>ProcessMon64</td>
<td>3152</td>
<td>RegQueryValue</td>
<td>HKLM\System\CurrentControlSet\Control\WMI\Securiy\Base\Vad3241-1122-2f...</td>
<td>SUCCESS</td>
</tr>
<tr>
<td>3:01:48.572</td>
<td>ProcessMon64</td>
<td>3152</td>
<td>RegQueryValue</td>
<td>HKLM\System\CurrentControlSet\Control\WMI\Securiy\Base\Vad3241-1122-2f...</td>
<td>SUCCESS</td>
</tr>
<tr>
<td>3:01:48.573</td>
<td>ProcessMon64</td>
<td>3152</td>
<td>RegQueryValue</td>
<td>HKLM\System\CurrentControlSet\Control\WMI\Securiy\Base\Vad3241-1122-2f...</td>
<td>SUCCESS</td>
</tr>
<tr>
<td>3:01:48.574</td>
<td>ProcessMon64</td>
<td>3152</td>
<td>RegQueryValue</td>
<td>HKLM\System\CurrentControlSet\Control\WMI\Securiy\Base\Vad3241-1122-2f...</td>
<td>SUCCESS</td>
</tr>
<tr>
<td>3:01:48.575</td>
<td>ProcessMon64</td>
<td>3152</td>
<td>RegQueryValue</td>
<td>HKLM\System\CurrentControlSet\Control\WMI\Securiy\Base\Vad3241-1122-2f...</td>
<td>SUCCESS</td>
</tr>
<tr>
<td>3:01:48.576</td>
<td>ProcessMon64</td>
<td>3152</td>
<td>RegQueryValue</td>
<td>HKLM\System\CurrentControlSet\Control\WMI\Securiy\Base\Vad3241-1122-2f...</td>
<td>SUCCESS</td>
</tr>
<tr>
<td>3:01:48.577</td>
<td>ProcessMon64</td>
<td>3152</td>
<td>RegQueryValue</td>
<td>HKLM\System\CurrentControlSet\Control\WMI\Securiy\Base\Vad3241-1122-2f...</td>
<td>SUCCESS</td>
</tr>
<tr>
<td>3:01:48.578</td>
<td>ProcessMon64</td>
<td>3152</td>
<td>RegQueryValue</td>
<td>HKLM\System\CurrentControlSet\Control\WMI\Securiy\Base\Vad3241-1122-2f...</td>
<td>SUCCESS</td>
</tr>
<tr>
<td>3:01:48.579</td>
<td>ProcessMon64</td>
<td>3152</td>
<td>RegQueryValue</td>
<td>HKLM\System\CurrentControlSet\Control\WMI\Securiy\Base\Vad3241-1122-2f...</td>
<td>SUCCESS</td>
</tr>
<tr>
<td>3:01:48.580</td>
<td>ProcessMon64</td>
<td>3152</td>
<td>RegQueryValue</td>
<td>HKLM\System\CurrentControlSet\Control\WMI\Securiy\Base\Vad3241-1122-2f...</td>
<td>SUCCESS</td>
</tr>
<tr>
<td>3:01:48.581</td>
<td>ProcessMon64</td>
<td>3152</td>
<td>RegQueryValue</td>
<td>HKLM\System\CurrentControlSet\Control\WMI\Securiy\Base\Vad3241-1122-2f...</td>
<td>SUCCESS</td>
</tr>
<tr>
<td>3:01:48.582</td>
<td>ProcessMon64</td>
<td>3152</td>
<td>RegQueryValue</td>
<td>HKLM\System\CurrentControlSet\Control\WMI\Securiy\Base\Vad3241-1122-2f...</td>
<td>SUCCESS</td>
</tr>
<tr>
<td>3:01:48.583</td>
<td>ProcessMon64</td>
<td>3152</td>
<td>RegQueryValue</td>
<td>HKLM\System\CurrentControlSet\Control\WMI\Securiy\Base\Vad3241-1122-2f...</td>
<td>SUCCESS</td>
</tr>
<tr>
<td>3:01:48.584</td>
<td>ProcessMon64</td>
<td>3152</td>
<td>RegQueryValue</td>
<td>HKLM\System\CurrentControlSet\Control\WMI\Securiy\Base\Vad3241-1122-2f...</td>
<td>SUCCESS</td>
</tr>
<tr>
<td>3:01:48.585</td>
<td>ProcessMon64</td>
<td>3152</td>
<td>RegQueryValue</td>
<td>HKLM\System\CurrentControlSet\Control\WMI\Securiy\Base\Vad3241-1122-2f...</td>
<td>SUCCESS</td>
</tr>
<tr>
<td>3:01:48.586</td>
<td>ProcessMon64</td>
<td>3152</td>
<td>RegQueryValue</td>
<td>HKLM\System\CurrentControlSet\Control\WMI\Securiy\Base\Vad3241-1122-2f...</td>
<td>SUCCESS</td>
</tr>
<tr>
<td>3:01:48.587</td>
<td>ProcessMon64</td>
<td>3152</td>
<td>RegQueryValue</td>
<td>HKLM\System\CurrentControlSet\Control\WMI\Securiy\Base\Vad3241-1122-2f...</td>
<td>SUCCESS</td>
</tr>
<tr>
<td>3:01:48.588</td>
<td>ProcessMon64</td>
<td>3152</td>
<td>RegQueryValue</td>
<td>HKLM\System\CurrentControlSet\Control\WMI\Securiy\Base\Vad3241-1122-2f...</td>
<td>SUCCESS</td>
</tr>
<tr>
<td>3:01:48.589</td>
<td>ProcessMon64</td>
<td>3152</td>
<td>RegQueryValue</td>
<td>HKLM\System\CurrentControlSet\Control\WMI\Securiy\Base\Vad3241-1122-2f...</td>
<td>SUCCESS</td>
</tr>
</tbody>
</table>

Showing all 14,974 events. Backed by page file.
Process Explorer

![Process Explorer](image)

<table>
<thead>
<tr>
<th>Process</th>
<th>PID</th>
<th>CPU</th>
<th>Private</th>
<th>Working Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Idle Process</td>
<td>0</td>
<td>93.19</td>
<td>0 K</td>
<td>24 K</td>
</tr>
<tr>
<td>System</td>
<td>4</td>
<td>0.15</td>
<td>192 K</td>
<td>1,892 K</td>
</tr>
<tr>
<td>Scripts</td>
<td>356</td>
<td>2.43</td>
<td>0 K</td>
<td>0 K</td>
</tr>
<tr>
<td>Services.exe</td>
<td>585</td>
<td>0.01</td>
<td>2,352 K</td>
<td>4,420 K</td>
</tr>
<tr>
<td>svchost.exe</td>
<td>6388</td>
<td>2.332</td>
<td>2,332 K</td>
<td>6,404 K</td>
</tr>
<tr>
<td>WiseCommm.exe</td>
<td>4860</td>
<td>0.01</td>
<td>24,392 K</td>
<td>18,164 K</td>
</tr>
<tr>
<td>FlashUtil10w_ActiveX.exe</td>
<td>585</td>
<td>0.01</td>
<td>2,352 K</td>
<td>4,420 K</td>
</tr>
<tr>
<td>WisePvSE.exe</td>
<td>6388</td>
<td>2.332</td>
<td>2,332 K</td>
<td>6,404 K</td>
</tr>
<tr>
<td>svchost.exe</td>
<td>932</td>
<td>5.684</td>
<td>6,648 K</td>
<td>6,648 K</td>
</tr>
<tr>
<td>MsMpEng.exe</td>
<td>1000</td>
<td>106.392</td>
<td>55,996 K</td>
<td>55,996 K</td>
</tr>
<tr>
<td>atesnx.exe</td>
<td>460</td>
<td>1.596</td>
<td>1,952 K</td>
<td>1,952 K</td>
</tr>
<tr>
<td>atesclx.exe</td>
<td>1396</td>
<td>2.332</td>
<td>3,956 K</td>
<td>3,956 K</td>
</tr>
<tr>
<td>svchost.exe</td>
<td>528</td>
<td>26.236</td>
<td>14,032 K</td>
<td>14,032 K</td>
</tr>
<tr>
<td>svchost.exe</td>
<td>484</td>
<td>123.904</td>
<td>114,872 K</td>
<td>114,872 K</td>
</tr>
</tbody>
</table>

CPU Usage: 6.81%
Commit Charge: 52.91%
Processes: 83
Physical Usage: 81
Windows Performance Monitor
udtdiag ships with UniData in the `udtbin directory`
Latest version is also available in entitled tech note SFMA-9735
U2 technical support providers and customers use output to diagnose problems on a UniData (UD) system
Gets info from the UD log files, UD commands, and operating system commands and produces a snapshot

```
C:\$UDTBIN\udtdiag target_directory
C:\udthome\bin\udtdiag -h
```
uvdiag is available with UniVerse 11.1.0 and higher
Also available in public tech notes UNV-4 and UNV-8 for Windows respectively
Preserves data about the UniVerse (UV) system for future analysis
Only administrator can execute this script
Users can be active on the system

C:\.uvhome\bin\uvdiag target_directory
C:\.uvhome\bin\uvdiag -h
Conducting a Benchmark: Approach

- Create a benchmark indicative of functions being performed in the applications running on the U2 databases
- Determine the type of CPU and I/O load you want to sustain during benchmarking
- Generate good metrics to compare the environment before and after applying tuning parameters
- Use Windows utilities to monitor system activities during the benchmark
Identify Tuning Areas: Memory/CPU

- Review Memory Capacity
- Review CPU Capacity
- Check for paging
- Check for high CPU usage by a process
- Check Windows API calls
Identify Tuning Areas: Disk I/O

- Check parameters for tuning NTFS file system
- Check RAID configuration
 - RAID 10 is a good performer for U2 databases
- Turn NTFS file system logging off
- Spread files over multiple spindles in a LUN (Logical Unit Number)
Benchmark: Be Proactive

- Perform Windows health checks on at least a yearly basis
- Perform U2 health checks on a yearly basis
- Monitor the system using the Windows performance utilities
- Check logs on a regular basis
- Monitor I/O and CPU usage
- Make sure the system is not paging
Services Available

- **New System Optimization**
 - Make sure U2 is optimized for the new hardware

- **Ongoing Annual HealthCheck**
 - 40% of all down systems are caused by personnel errors
 - We review the system annually to try and avert problems

For more information about Health Checks
email: **U2Services@rs.com**
Questions & Answers

To ask a question:

- Click on hand icon with green arrow and we will call your name

Or you may email us your question later at:

U2Services@rs.com
Important Disclaimer

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.

WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED.

IN ADDITION, THIS INFORMATION IS BASED ON ROCKET SOFTWARE’S CURRENT PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY ROCKET SOFTWARE WITHOUT NOTICE.

ROCKET SOFTWARE SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.

NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, OR SHALL HAVE THE EFFECT OF:

• CREATING ANY WARRANTY OR REPRESENTATION FROM ROCKET SOFTWARE (OR ITS AFFILIATES OR ITS OR THEIR SUPPLIERS AND/OR LICENSORS); OR

• ALTERING THE TERMS AND CONDITIONS OF THE APPLICABLE LICENSE AGREEMENT GOVERNING THE USE OF ROCKET SOFTWARE SOFTWARE.
The following are trademarks or registered trademarks of Rocket Software, Inc.: Dynamic Connect, SystemBuilder, U2, U2 Web Development Environment, UniData, UniVerse, and wIntegrate.

IBM, the IBM logo, AIX, and DB2 are trademarks of IBM in the United States and other countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Microsoft, SQL Server, Windows, and Excel are trademarks of the Microsoft group of companies.

UNIX is a registered trademark of The Open Group.

Other company, product, and service names mentioned herein may be trademarks or service marks of others.